Commutative subalgebras of three first-order symmetry operators and separation of variables in the wave equation / V. G. Bagrov [et al.]

Уровень набора: Soviet Physics Journal, Scientific JournalАльтернативный автор-лицо: Bagrov, V. G., physicist, Professor of Tomsk state University, 1938-, Vladislav Gavriilovich;Samsonov, B. F.;Shapovalov, A. V., mathematician, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1949-, Aleksandr Vasilyevich;Shirokov, I. V.Язык: английский.Страна: .Резюме или реферат: The problem of complex separation of variables in the wave equation is considered in four-dimensional Minkowskii space-time. In contrast to the known series of researches by Kalnins and Miller (see Ref. Zh., Fiz., 2B9 (1978); 1B208 and 1B209 (1979), e.g.), underlying this research is a theorem on the necessary and sufficient conditions of total separation of variables in the non-parabolic V. N. Shapovalov equation (Differents. Uravn.,16, No. 10, 1864–1874 (1980)). Nonequivalent complete sets of three differential first-order symmetry operators are constructed, appropriate coordinate systems are found, and complete separation of variables is performed in the wave equation.Примечания о наличии в документе библиографии/указателя: [References: p. 452 (11 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: p. 452 (11 tit.)]

The problem of complex separation of variables in the wave equation is considered in four-dimensional Minkowskii space-time. In contrast to the known series of researches by Kalnins and Miller (see Ref. Zh., Fiz., 2B9 (1978); 1B208 and 1B209 (1979), e.g.), underlying this research is a theorem on the necessary and sufficient conditions of total separation of variables in the non-parabolic V. N. Shapovalov equation (Differents. Uravn.,16, No. 10, 1864–1874 (1980)). Nonequivalent complete sets of three differential first-order symmetry operators are constructed, appropriate coordinate systems are found, and complete separation of variables is performed in the wave equation

Для данного заглавия нет комментариев.

оставить комментарий.