Intransitivity in multiple solutions of Kemeny Ranking Problem / S. V. Muravyov (Murav’ev), I. A. Marinushkina
Уровень набора: Journal of Physics, Conference SeriesЯзык: английский.Страна: .Резюме или реферат: Kemeny rule is one of deeply justified ways to solve the problem allowing to find such a linear order (Kemeny ranking) of alternatives that a distance from it to the initial rankings (input preference profile) is minimal. The approach can give considerably more than one optimal solutions. The multiple solutions (output profile) can involve intransitivity of the input profile. Favorable obstacle in dealing with intransitive output profile is that the intransitive cycles are lexicographically ordered what can help when algorithmically revealing them..Примечания о наличии в документе библиографии/указателя: [References: 15 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References: 15 tit.]
Kemeny rule is one of deeply justified ways to solve the problem allowing to find such a linear order (Kemeny ranking) of alternatives that a distance from it to the initial rankings (input preference profile) is minimal. The approach can give considerably more than one optimal solutions. The multiple solutions (output profile) can involve intransitivity of the input profile. Favorable obstacle in dealing with intransitive output profile is that the intransitive cycles are lexicographically ordered what can help when algorithmically revealing them.
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.