Study of mass and cluster flux in a pulsed gas system with enhanced nanoparticle aggregation / S. Drache, V. Stranak, Z. Hubicka [et al.]
Уровень набора: Journal of Applied Physics = 1931-Язык: английский.Страна: .Резюме или реферат: The paper is focused on investigation of enhanced metal (Cu) cluster growth in a source of Haberland's type using pulsed gas aggregation. The aggregation Ar gas was delivered into the cluster source in a pulse regime, which results in the formation of well pronounced aggregation pressure peaks. The pressure peaks were varied by varying the different pulse gas frequency at the same mean pressure kept for all experiments. Hence, we were able to study the effect of enhanced aggregation pressure on cluster formation. Time-resolved measurements of cluster mass distribution were performed to estimate the mass and particle flux. The paper demonstrates that pulse gas aggregation influences growth of Cu nanoparticles, i.e., cluster mass/size, mass flux, and particle flux emitted from the cluster source. It was found that cluster mass related quantities are strongly influenced by pulsed gas frequency; the highest value of mass flux appears at the most pronounced pressure peaks. On the other hand, the particle flux depends only slightly on the gas pulse frequency. The explanation based on cooling and thermalization of sputtered particles is discussed in the paper..Примечания о наличии в документе библиографии/указателя: [References: 33 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 33 tit.]
The paper is focused on investigation of enhanced metal (Cu) cluster growth in a source of Haberland's type using pulsed gas aggregation. The aggregation Ar gas was delivered into the cluster source in a pulse regime, which results in the formation of well pronounced aggregation pressure peaks. The pressure peaks were varied by varying the different pulse gas frequency at the same mean pressure kept for all experiments. Hence, we were able to study the effect of enhanced aggregation pressure on cluster formation. Time-resolved measurements of cluster mass distribution were performed to estimate the mass and particle flux. The paper demonstrates that pulse gas aggregation influences growth of Cu nanoparticles, i.e., cluster mass/size, mass flux, and particle flux emitted from the cluster source. It was found that cluster mass related quantities are strongly influenced by pulsed gas frequency; the highest value of mass flux appears at the most pronounced pressure peaks. On the other hand, the particle flux depends only slightly on the gas pulse frequency. The explanation based on cooling and thermalization of sputtered particles is discussed in the paper.
Для данного заглавия нет комментариев.