Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity / E. A. Levchenko, A. Yu. Trifonov, A. V. Shapovalov
Уровень набора: Russian Physics Journal = 1965-Язык: английский.Резюме или реферат: The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered..Примечания о наличии в документе библиографии/указателя: [References: p. 290-291 (15 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | нелинейные уравнения | уравнение Фоккера-Планка-Колмогорова | последовательные системы | инвариантные группы | nonlinear Fokker–Planck–Kolmogorov equation | consistent system | Lie symmetries | invariant-group solution Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References: p. 290-291 (15 tit.)]
The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered.
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.