Impact of Thermochemical Treatment on Structure and Phase State of Austenitic Alloy / N. Popova [et al.]
Уровень набора: (RuTPU)RU\TPU\network\4816, AIP Conference ProceedingsЯзык: английский.Резюме или реферат: The paper presents the transmission electron microscope (TEM) investigations of the structure and phase composition of 0.4C-1Cr-1Ni-1Al austenite steel alloy before and after electrolytic plasma treatment or carbonitriding. Electrolytic plasma treatment is performed in an aqueous solution at 700°С for 5 min. The phase composition of the alloy, its size, volume fraction and localization are determined for carbide and carbonitride phases. The type of the dislocation substructures is determined for each phase composition, and the scalar dislocation density is measured. It is shown that before the electrolytic plasma treatment, the alloy matrix is Al[0.7]Cr[0.3]Ni[3] FCC phase which represents grains with different size. There are fine grains along the boundaries together with coarse grains. Experiments show that particles of other phases are observed inside coarse grains of Al[0.7]Cr[0.3]Ni[3] phase, namely: 1) NiAl lamellar particles (BCC phase) and 2) AlCrNi[2] rounded particles (FCC phase). Moreover, NiAl and AlCrNi[2] phases are present either in separately positioned groups or groups of single-phase grains, along the boundaries of which there are Cr[23]C[6] carbide phase particles. Al[0.7]Cr[0.3]Ni[3], AlCrNi[2] and NiAl phases are found in the specimen subsurface both before and after carbonitriding. The alloy matrix is still Al[0.7]Cr[0.3]Ni[3] phase. However, carbonitriding causes partial delamination of Al[0.7]Cr[0.3]Ni[3] and AlCrNi[2] solid solutions, which is evidenced by the deterioration (satellites and strands of the main reflections) of their diffraction patterns and a salt/pepper contrast presenting on TEM images. The formation of nanoscale Cr[2]N particles occurs inside Al[0.7]Cr[0.3]Ni[3] grains..Примечания о наличии в документе библиографии/указателя: [References: 4 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | термохимическая обработка | структуры | фазовое состояние | аустенитные сплавы | аустенитные стали | плазменная обработка | зерна | просвечивающие электронные микроскопы | плотность дислокаций Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 4 tit.]
The paper presents the transmission electron microscope (TEM) investigations of the structure and phase composition of 0.4C-1Cr-1Ni-1Al austenite steel alloy before and after electrolytic plasma treatment or carbonitriding. Electrolytic plasma treatment is performed in an aqueous solution at 700°С for 5 min. The phase composition of the alloy, its size, volume fraction and localization are determined for carbide and carbonitride phases. The type of the dislocation substructures is determined for each phase composition, and the scalar dislocation density is measured. It is shown that before the electrolytic plasma treatment, the alloy matrix is Al[0.7]Cr[0.3]Ni[3] FCC phase which represents grains with different size. There are fine grains along the boundaries together with coarse grains. Experiments show that particles of other phases are observed inside coarse grains of Al[0.7]Cr[0.3]Ni[3] phase, namely: 1) NiAl lamellar particles (BCC phase) and 2) AlCrNi[2] rounded particles (FCC phase). Moreover, NiAl and AlCrNi[2] phases are present either in separately positioned groups or groups of single-phase grains, along the boundaries of which there are Cr[23]C[6] carbide phase particles. Al[0.7]Cr[0.3]Ni[3], AlCrNi[2] and NiAl phases are found in the specimen subsurface both before and after carbonitriding. The alloy matrix is still Al[0.7]Cr[0.3]Ni[3] phase. However, carbonitriding causes partial delamination of Al[0.7]Cr[0.3]Ni[3] and AlCrNi[2] solid solutions, which is evidenced by the deterioration (satellites and strands of the main reflections) of their diffraction patterns and a salt/pepper contrast presenting on TEM images. The formation of nanoscale Cr[2]N particles occurs inside Al[0.7]Cr[0.3]Ni[3] grains.
Для данного заглавия нет комментариев.