Adjustment of fundamental physical constant values using the interval fusion with preference aggregation / S. V. Muravyov (Murav’ev), L. I. Khudonogova, Ho Minh Dai

Уровень набора: MeasurementОсновной Автор-лицо: Muravyov (Murav’ev), S. V., specialist in the field of control and measurement equipment, Professor of Tomsk Polytechnic University,Doctor of technical sciences, 1954-, Sergey VasilyevichАльтернативный автор-лицо: Khudonogova, L. I., specialist in the field of informatics and computer technology, Engineer of Tomsk Polytechnic University, 1989-, Ludmila Igorevna;Ho Minh DaiКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Отделение автоматизации и робототехникиЯзык: английский.Страна: .Резюме или реферат: For adjustment of fundamental constants, the interval fusion with preference aggregation (IF&PA) method is proposed to be used, which was proved to be robust and accurate when processing heteroscedastic data. The method forms a profile of rankings of discrete values obtained by partition of the range of actual values (RAV) being a union of input intervals to be adjusted; determines the profile consensus ranking; and the highest ranked consensus value is accepted as a fusion result x*. A nonlinear effect of the RAV partition norm on x* is studied. IF&PA, redesigned to obtain more accurate result x**, was experimentally tested when adjusting the Planck constant values on both random input data and real life values used in the CODATA adjustments 2006 and 2017. It is shown the IF&PA works well with no statistical assumptions and provides adjusted result x** with tangibly reduced uncertainty in contrast to traditional Birge ratio methods..Примечания о наличии в документе библиографии/указателя: [References: 37 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | interval fusion | preference aggregation | fundamental constant adjustment | consensus estimate | ranking | ранжирование Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 37 tit.]

For adjustment of fundamental constants, the interval fusion with preference aggregation (IF&PA) method is proposed to be used, which was proved to be robust and accurate when processing heteroscedastic data. The method forms a profile of rankings of discrete values obtained by partition of the range of actual values (RAV) being a union of input intervals to be adjusted; determines the profile consensus ranking; and the highest ranked consensus value is accepted as a fusion result x*. A nonlinear effect of the RAV partition norm on x* is studied. IF&PA, redesigned to obtain more accurate result x**, was experimentally tested when adjusting the Planck constant values on both random input data and real life values used in the CODATA adjustments 2006 and 2017. It is shown the IF&PA works well with no statistical assumptions and provides adjusted result x** with tangibly reduced uncertainty in contrast to traditional Birge ratio methods.

Для данного заглавия нет комментариев.

оставить комментарий.