Change in the Phase Composition and Lattice Parameters of the Solid Solution Based on a-Ti in the Surface Layers of the Ti–6Al–4V Alloy Subjected to Electron-Beam Treatment / O. B. Perevalova, A. V. Panin, E. A. Sinyakova

Уровень набора: Physics of Metals and MetallographyОсновной Автор-лицо: Perevalova, O. B., Olga BorisovnaАльтернативный автор-лицо: Panin, A. V., physicist, Professor of Tomsk Polytechnic University, doctor of physical and mathematical Sciences, 1971-, Alexey Viktorovich;Sinyakova, E. A., Elena AleksandrovnaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа ядерных технологий, Отделение экспериментальной физикиЯзык: английский.Страна: .Резюме или реферат: The microstructure, phase composition, and lattice parameters of the α-Ti- based solid solution in the Ti-6Al-4V alloy treated by pulsed and continuous electron beams with the energy density of 18-24 and 450 J/cm2, respectively, have been investigated using the methods of X-ray diffraction analysis and transmission and scanning electron microscopy. In the initial state, the two-phase (α + β) alloy had a polycrystalline structure with the equiaxed α-phase grains and β-phase grains located at the junctions or along the boundaries of the α-phase grains. After the electron-beam treatment, α' martensite with a lamellar structure is formed in the molten surface layer, which then experiences an α' → α + α'' + β phase transformation. In the α phase, the lamellar structure inherited from the α' martensite is retained; the β phase is located along the boundaries of lamellar grains of the α phase; the α'' phase is located both in the β phase and inside the lamellar grains of the α phase. It has been revealed that the greater the total volume fraction of the β and α'' phases, the greater the lattice parameters of α-Ti and their axial ratio c/a, and the less the total mean-square displacements of atoms in the 101 direction in the α-Ti phase. The decrease in the total mean-square displacements in the α-Ti phase is due to the diffusion of the vanadium atoms into the β phase. With an increase in the energy density of the electron beam and with a decrease in the rate of cooling of the molten layer, the total volume fraction of the β and α'' phases increases and reaches 6%..Примечания о наличии в документе библиографии/указателя: [References: 23 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | titanium Ti–6Al–4V alloy | electron-beam treatment | X-ray diffraction analysis | transmission and scanning electron microscopy | phase composition | microstructure | total mean-square displacements of atoms | титановые сплавы | электронно-лучевая обработка | рентгеноструктурный анализ | микроскопия | фазовый состав Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 23 tit.]

The microstructure, phase composition, and lattice parameters of the α-Ti- based solid solution in the Ti-6Al-4V alloy treated by pulsed and continuous electron beams with the energy density of 18-24 and 450 J/cm2, respectively, have been investigated using the methods of X-ray diffraction analysis and transmission and scanning electron microscopy. In the initial state, the two-phase (α + β) alloy had a polycrystalline structure with the equiaxed α-phase grains and β-phase grains located at the junctions or along the boundaries of the α-phase grains. After the electron-beam treatment, α' martensite with a lamellar structure is formed in the molten surface layer, which then experiences an α' → α + α'' + β phase transformation. In the α phase, the lamellar structure inherited from the α' martensite is retained; the β phase is located along the boundaries of lamellar grains of the α phase; the α'' phase is located both in the β phase and inside the lamellar grains of the α phase. It has been revealed that the greater the total volume fraction of the β and α'' phases, the greater the lattice parameters of α-Ti and their axial ratio c/a, and the less the total mean-square displacements of atoms in the 101 direction in the α-Ti phase. The decrease in the total mean-square displacements in the α-Ti phase is due to the diffusion of the vanadium atoms into the β phase. With an increase in the energy density of the electron beam and with a decrease in the rate of cooling of the molten layer, the total volume fraction of the β and α'' phases increases and reaches 6%.

Для данного заглавия нет комментариев.

оставить комментарий.