Reliability of crowdsourcing as a method for collecting emotions labels on pictures / O. E. Korovina, G. M. A. Baez, F. Casati

Уровень набора: BMC Research NotesОсновной Автор-лицо: Korovina, O. E., Olga EvgenjevnaАльтернативный автор-лицо: Baez, G. M. A., Gonzalez Markos Antonio;Casati, F., Italian economist and Professor at the University of Trento (Italy), Professor of Tomsk Polytechnic University, candidate of technical Sciences, 1971-, FabioКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Институт социально-гуманитарных технологий, Кафедра экономики, Международная научно-образовательная лаборатория технологий улучшения благополучия пожилых людейЯзык: английский.Страна: .Резюме или реферат: Objective In this paper we study if and under what conditions crowdsourcing can be used as a reliable method for collecting high-quality emotion labels on pictures. To this end, we run a set of crowdsourcing experiments on the widely used IAPS dataset, using the Self-Assessment Manikin (SAM) emotion collection instrument, in order to rate pictures on valence, arousal and dominance, and explore the consistency of crowdsourced results across multiple runs (reliability) and the level of agreement with the gold labels (quality). In doing so, we explored the impact of targeting populations of different level of reputation (and cost) and collecting varying numbers of ratings per picture. Results The results tell us that crowdsourcing can be a reliable method, reaching excellent levels of reliability and agreement with only 3 ratings per picture for valence and 8 per arousal, with only marginal difference between target populations. Results for dominance were very poor, echoing previous studies on the data collection instrument used. We also observed that specific types of content generate diverging opinions in participants (leading to higher variability or multimodal distributions), which remain consistent across pictures of the same theme. These can inform the data collection and exploitation of crowdsourced emotion datasets..Примечания о наличии в документе библиографии/указателя: [References: 15 tit.].Тематика: электронный ресурс | труды учёных ТПУ | crowdsourcing emotions | empirical study | rating behavior | reliability | краудсорсинг Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 15 tit.]

Objective In this paper we study if and under what conditions crowdsourcing can be used as a reliable method for collecting high-quality emotion labels on pictures. To this end, we run a set of crowdsourcing experiments on the widely used IAPS dataset, using the Self-Assessment Manikin (SAM) emotion collection instrument, in order to rate pictures on valence, arousal and dominance, and explore the consistency of crowdsourced results across multiple runs (reliability) and the level of agreement with the gold labels (quality). In doing so, we explored the impact of targeting populations of different level of reputation (and cost) and collecting varying numbers of ratings per picture. Results The results tell us that crowdsourcing can be a reliable method, reaching excellent levels of reliability and agreement with only 3 ratings per picture for valence and 8 per arousal, with only marginal difference between target populations. Results for dominance were very poor, echoing previous studies on the data collection instrument used. We also observed that specific types of content generate diverging opinions in participants (leading to higher variability or multimodal distributions), which remain consistent across pictures of the same theme. These can inform the data collection and exploitation of crowdsourced emotion datasets.

Для данного заглавия нет комментариев.

оставить комментарий.