Analysis of Deep Neural Networks for Detection of Coronary Artery Stenosis / V. V. Danilov, O. M. Gerget, K. Yu. Klyshnikov [et al.]

Уровень набора: Programming and Computer SoftwareАльтернативный автор-лицо: Danilov, V. V., specialist in the field of informatics and computer technology, engineer of Tomsk Polytechnic University, 1989-, Vyacheslav Vladimirovich;Gerget, O. M., Specialist in the field of informatics and computer technology, Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences, 1974-, Olga Mikhailovna;Klyshnikov, K. Yu., Kirill Yurjevich;Frangi, A., Alejandro;Ovcharenko, E. A., Evgeny AndreevichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Отделение информационных технологийЯзык: английский.Страна: .Резюме или реферат: This paper describes an approach based on machine learning technology that is of particular interest for the localization and characterization of both single focal stenoses and multivessel multifocal lesions. Due to the complexity of analyzing large amounts of data for the cardiac surgeon, we pay special attention to the analysis, training, and comparison of popular neural networks that classify and localize foci of stenosis on coronary angiography data. From the complete coronarography dataset collected at the Research Institute for Complex Issues of Cardiovascular Diseases, we retrospectively select data of 100 patients. For the automated analysis of the medical data, the paper considers in detail three models (SSD MobileNet V1, Faster-RCNN ResNet-50 V1, and Faster-RCNN NASNet), which differ in their architecture, complexity, and the number of weights. The models are compared in terms of their basic efficiency characteristics: accuracy, training time, and prediction time. The test results show that the training and prediction times are directly proportional to the complexity of the models. In this regard, Faster-RCNN NASNet exhibits the lowest prediction time (the average processing time for one image is 880 ms), while Faster-RCNN ResNet-50 V1 has the highest prediction accuracy. The latter model reaches the mean average precision (mAP) level of 0.92 on the validation dataset. On the other hand, SSD MobileNet V1 is the fastest model, capable of making predictions with a prediction rate of 23 fps..Примечания о наличии в документе библиографии/указателя: [References: 19 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 19 tit.]

This paper describes an approach based on machine learning technology that is of particular interest for the localization and characterization of both single focal stenoses and multivessel multifocal lesions. Due to the complexity of analyzing large amounts of data for the cardiac surgeon, we pay special attention to the analysis, training, and comparison of popular neural networks that classify and localize foci of stenosis on coronary angiography data. From the complete coronarography dataset collected at the Research Institute for Complex Issues of Cardiovascular Diseases, we retrospectively select data of 100 patients. For the automated analysis of the medical data, the paper considers in detail three models (SSD MobileNet V1, Faster-RCNN ResNet-50 V1, and Faster-RCNN NASNet), which differ in their architecture, complexity, and the number of weights. The models are compared in terms of their basic efficiency characteristics: accuracy, training time, and prediction time. The test results show that the training and prediction times are directly proportional to the complexity of the models. In this regard, Faster-RCNN NASNet exhibits the lowest prediction time (the average processing time for one image is 880 ms), while Faster-RCNN ResNet-50 V1 has the highest prediction accuracy. The latter model reaches the mean average precision (mAP) level of 0.92 on the validation dataset. On the other hand, SSD MobileNet V1 is the fastest model, capable of making predictions with a prediction rate of 23 fps.

Для данного заглавия нет комментариев.

оставить комментарий.