Hydride-dehydride fine zirconium powders for pyrotechnics / I. V. Amelichkin, E. M. Knyazeva, R. O. Medvedev [et al.]
Уровень набора: International Journal of Energetic Materials and Chemical PropulsionЯзык: английский.Страна: .Резюме или реферат: In this paper, the possibility of obtaining fine zirconium powders by the hydrogenation-dehydrogenation method is studied. The main parameters of the technological process that allow obtaining fine zirconium powders for pyrotechnics are determined. Hydrogenation and dehydrogenation of the samples are carried out in a rotating quartz tube placed in a furnace at temperatures of 380° C and 850° C, respectively. Zirconium hydride is milled using tungsten carbide balls to eliminate the presence of impurities. Thus it is possible to obtain a fine zirconium powder with a number-average particle size of 4.527 ± 2.650 μm and a specific surface area of 0.231 m2/g from the initial electrolytic zirconium powder with a number-average particle size of 220 μm and a specific surface area < 0.1 m2/g. The allowed relative error of measuring the specific surface area is ± 5%. Hence it is possible to reduce the particle size of zirconium powder by 54.6 times without changing the composition..Примечания о наличии в документе библиографии/указателя: [References: 20 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | zirconium | powder | milling | hydrogenation-dehydrogenation | hydride | цирконий | порошки | измельчение | гидрирование Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 20 tit.]
In this paper, the possibility of obtaining fine zirconium powders by the hydrogenation-dehydrogenation method is studied. The main parameters of the technological process that allow obtaining fine zirconium powders for pyrotechnics are determined. Hydrogenation and dehydrogenation of the samples are carried out in a rotating quartz tube placed in a furnace at temperatures of 380° C and 850° C, respectively. Zirconium hydride is milled using tungsten carbide balls to eliminate the presence of impurities. Thus it is possible to obtain a fine zirconium powder with a number-average particle size of 4.527 ± 2.650 μm and a specific surface area of 0.231 m2/g from the initial electrolytic zirconium powder with a number-average particle size of 220 μm and a specific surface area < 0.1 m2/g. The allowed relative error of measuring the specific surface area is ± 5%. Hence it is possible to reduce the particle size of zirconium powder by 54.6 times without changing the composition.
Для данного заглавия нет комментариев.