Developing Novel Gas Discharge Emitters of Acoustic Waves in Air for Nondestructive Testing of Materials / D. A. Derusova, V. O. Nekhoroshev, V. Yu. Shpilnoy, V. P. Vavilov

Уровень набора: SensorsАльтернативный автор-лицо: Derusova, D. A., Specialist in biotechnical systems and technologies, Senior researcher of Tomsk Polytechnic University, Candidate of technical sciences, 1989-, Dariya Aleksandrovna;Nekhoroshev, V. O., Vitaly Olegovich;Shpilnoy, V. Yu., radiophysicist, Junior Researcher, Tomsk Polytechnic University, Candidate of Technical Sciences, 1992-, Viktor Yurjevich;Vavilov, V. P., Specialist in the field of dosimetry and methodology of nondestructive testing (NDT), Doctor of technical sciences (DSc), Professor of Tomsk Polytechnic University (TPU), 1949-, Vladimir PlatonovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа неразрушающего контроля и безопасности, Центр промышленной томографии, Научно-производственная лаборатория "Тепловой контроль"Язык: английский.Страна: .Резюме или реферат: This study was devoted to the development of novel devices and a methodology intended for generating ultrasonic waves in an air medium by using atmospheric pressure gas discharge. In the proposed electrode system, the discharge process was accompanied by the generation of acoustic waves on the emitter surface and, consequently, in the ambient air. The gas discharge emitter vibrations were analyzed by applying the technique of Scanning Laser Doppler Vibrometry (SLDV). It was shown that the magnitude of displacements matched the corresponding characteristics of classical piezoelectric and magnetostrictive transducers. The use of the Fast Fourier transform procedure supplied amplitude–frequency spectra of vibrations generated by the gas discharge emitter. The amplitude–frequency spectrum analysis showed that the proposed emitter was able to generate acoustic waves in the air with frequencies from 50 Hz to 100 kHz, and such a device can be used for the nondestructive testing (NDT) of materials. The results of the statistical analysis of vibration displacements in the repetitive pulsed mode were discussed. A non-stable characteristic of the vibration displacement of the emitter membrane was demonstrated. The parameters of such instability were associated with the features of gas discharge processes. In the experiments, the proposed gas discharge emitter was used in combination with SLDV for inspecting carbon-fiber-reinforced polymer composites. The experiments demonstrated the possibility of using an air-coupled gas discharge transmitter to generate acoustic waves in NDT applications..Примечания о наличии в документе библиографии/указателя: [References: 25 tit.].Тематика: электронный ресурс | труды учёных ТПУ | gas discharge | laser vibrometry | acoustic wave | nondestructive testing | composite | impact damage | газовый разряд | лазерная виброметрия | акустическая волна | неразрушающий контроль | ударное разрушение Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 25 tit.]

This study was devoted to the development of novel devices and a methodology intended for generating ultrasonic waves in an air medium by using atmospheric pressure gas discharge. In the proposed electrode system, the discharge process was accompanied by the generation of acoustic waves on the emitter surface and, consequently, in the ambient air. The gas discharge emitter vibrations were analyzed by applying the technique of Scanning Laser Doppler Vibrometry (SLDV). It was shown that the magnitude of displacements matched the corresponding characteristics of classical piezoelectric and magnetostrictive transducers. The use of the Fast Fourier transform procedure supplied amplitude–frequency spectra of vibrations generated by the gas discharge emitter. The amplitude–frequency spectrum analysis showed that the proposed emitter was able to generate acoustic waves in the air with frequencies from 50 Hz to 100 kHz, and such a device can be used for the nondestructive testing (NDT) of materials. The results of the statistical analysis of vibration displacements in the repetitive pulsed mode were discussed. A non-stable characteristic of the vibration displacement of the emitter membrane was demonstrated. The parameters of such instability were associated with the features of gas discharge processes. In the experiments, the proposed gas discharge emitter was used in combination with SLDV for inspecting carbon-fiber-reinforced polymer composites. The experiments demonstrated the possibility of using an air-coupled gas discharge transmitter to generate acoustic waves in NDT applications.

Для данного заглавия нет комментариев.

оставить комментарий.