Использование нейронной сети для построения краткосрочного прогноза электропотребления ООО «Омская энергосбытовая компания» (Запись № 321589)

Подробно MARC
000 -Маркер
Поле контроля фиксированной длины 13252nla2a2200625 4500
005 - Идентификатор версии
Поле контроля фиксированной длины 20231029230509.0
035 ## - Другие системные номера
Идентификатор записи (RuTPU)RU\TPU\book\347145
100 ## - Данные общей обработки
Данные общей обработки 20160830d2016 k y0rusy50 ca
101 0# - Язык ресурса
Язык текста, звукозаписи и т.д. русский
102 ## - Страна публикации или производства
Страна публикации Россия
135 ## - Поле кодированных данных: электронные ресурсы
Кодированные данные для электронного ресурса drgn ---uucaa
181 #0 - Поле кодированных данных: вид содержания
Код вида содержания i
182 #0 - Поле кодированных данных: средство доступа
Код средства доступа electronic
200 1# - Заглавие и сведения об ответственности
Основное заглавие Использование нейронной сети для построения краткосрочного прогноза электропотребления ООО «Омская энергосбытовая компания»
Первые сведения об ответственности В. И. Потапов [и др.]
203 ## - Вид содержания и средство доступа
Вид содержания Текст
Средство доступа электронный
215 ## - Физические характеристики
Сведения об объеме 1 файл (555 Kb)
230 ## -
-- Электронные текстовые данные (1 файл : 555 Kb)
300 ## - Общие примечания
Текст примечания Заглавие с титульного листа
320 ## - Примечания о наличии в ресурсе библиографии/указателя
Текст примечания [Библиогр.: с. 49 (21 назв.)]
330 ## - Резюме или реферат
Текст примечания Актуальность работы обусловлена требованиями действующего законодательства к прогнозированию электропотребления на рынке «на сутки вперед» для субъектов оптового рынка электроэнергии и мощности (ОРЭМ). Большая часть электроэнергии в России производится путем сжигания твердых полезных ископаемых. По данным отчета ОАО «Системный оператор Единой энергетической системы» за 2015 г. доля выработки электроэнергии по типам электростанций ЕЭС России составляет: 59,8 % - для тепловых электростанций, 15,6 % - для ветряных и солнечных электростанций, 19 % - для атомных электростанций и 5,6 % - для электростанций промышленных предприятий. При этом одной из основных задач, связанных с генерацией электрической энергии и ее потреблением, является задача поддержания баланса мощностей. С одной стороны, при увеличении плановой нагрузки могут возникнуть перебои в поставке электроэнергии, с другой стороны, уменьшение электропотребления приведет также к уменьшению КПД электростанций, и в конечном счете - к повышению стоимости на электроэнергию как для субъекта оптового рынка электроэнергии и мощности, так и для конечного потребителя. Увеличение точности прогнозирования электропотребления позволяет соблюдать баланс мощностей и эффективно использовать георесурсы для генерации электроэнергии, с учетом специфики потребителя. Для решения этих задач в России в 2004 г. был введен оптовый рынок электроэнергии и мощности, который функционирует и сейчас.
330 ## - Резюме или реферат
Текст примечания В соответствии с правилами взаимодействия между субъектом оптового рынка электроэнергии и мощности и ОАО «АТС», субъекты оптового рынка электроэнергии и мощности обязаны осуществлять ежедневный почасовой прогноз в режиме «на сутки вперед». Для обеспечения качественного прогнозирования электропотребления субъектам оптового рынка электроэнергии и мощности необходимо подготовить нормативную базу, разработать методику построения прогноза электропотребления, а также просчитать риски, связанные с точностью используемых моделей. С одной стороны, сложность решаемой задачи характеризуется наличием данных по точкам поставки, так как не всегда субъект оптового рынка электроэнергии и мощности имеет возможность собрать данные о потреблении отдельных энергообъектов в почасовом режиме. С другой стороны, внедрение систем коммерческого учета позволяет решить эту проблему с вложением больших инвестиций на установку автоматизированной системы коммерческого учета электроэнергии, но, как правило, субъект оптового рынка электроэнергии и мощности идет на такие долгосрочно окупаемые затраты. Работа может быть полезна как специалистам энергосбытовых компаний, которые занимаются построением прогнозных моделей, так и специалистам субъектов оптового рынка электроэнергии и мощности, которые осуществляют прогнозы на оптовом рынке электроэнергии и мощности в режиме «на сутки вперед». Цель работы: применение методики прогнозирования с использованием нейронной сети для построения прогностических моделей для ООО «Омская энергосбытовая компания». Методы исследования: модели Холта-Винтерса, ARIMA, нейронные сети, температурно-ветровой индекс. Результаты. Были рассмотрены методы построения прогностических моделей. Разработана методика построения прогноза ООО «Омская энергосбытовая компания» с использованием нейронной сети с учетом температурно-ветрового индекса и выделением общих типов дней по электропотреблению.
330 ## - Резюме или реферат
Текст примечания Relevance of the research is caused by the requirements of current legislation to «day-ahead» forecast of energy consumption in the market for wholesale electricity and capacity market participants (WECM). Most of electricity in Russia is produced by combustion of solid minerals. According to the report of JSC «System Operator of Unified Energy System» for 2015 the share of electricity production by the types of UES power plants in Russia is: 59,8 % for thermal power plants, 15, 6 % for wind and solar power plants, 19 % for nuclear power plants and 5,6 % for captive power plants. At the same time, one of the main problems associated with electric energy generation and its consumption is the problem of power balance maintenance. On the one hand, power delivery interruptions may occur when increasing planned load, on the other hand decrease in electric energy consumption will reduce the efficiency of the power plants, and increase the cost of electricity for wholesale electricity and capacity market participants, and for the end user. High accuracy in forecasting electricity consumption allows keeping power balance and using geo assets effectively to generate electricity, taking into account the specific character of the consumer. To solve these problems the wholesale market was introduced in Russia in 2004. It currently operates. The relevance of the discussed issue is caused by the current legislation of forecasting electricity consumption in the day-ahead market to the wholesale electricity and capacity market participants.
330 ## - Резюме или реферат
Текст примечания The wholesale electricity and capacity market was introduced in 2006, since that time, many companies received the status of the subject of WECM. According to the rules of interaction between the subject of wholesale electricity and capacity market participants and OJSC «ATS», the subjects of wholesale electricity and capacity market participants are required to carry out daily hourly «day-ahead» forecast. To ensure the quality of forecasting electricity consumption, the subjects of wholesale electricity and capacity market participants should prepare a regulatory framework, to develop methodology for building electricity consumption forecast and calculate the risks associated with the accuracy of the models used. On the one hand, the complexity of the problem solved is characterized by occurrence of aggregate data of supply points, as it is not always possible for the subject of wholesale electricity and capacity market participants to collect the data on individual consumption of power facilities in hourly mode. On the other hand, the introduction of commercial accounting system can solve this problem by embedding a large investment for installation of the automated commercial power system, but as a rule, the subject of wholesale electricity and capacity market participants goes to such a long-term cost-payback. The main aim of the study is to apply the forecasting methodology using neural network for building predictive models for LLC «Omsk Energy Retail Company». The methods used in the study: Holt-Winters model, the ARIMA, neural networks, temperature and wind index. The results. The authors have considered the methods of constructing the predictive models, the path of their evolution since the launch of wholesale electricity and capacity market participants, and developed the method of constructing the forecast of «Omsk Energy Retail Company» using neural network, taking into account the temperature and wind index and allocation of common types of days by electric energy consumption.
453 ## - Перевод
Заглавие Using neural network for building short-term forecast of electricity load of LLC «Omsk energy retail company»
Сведения, относящиеся к заглавию translation from Russian
Первые сведения об ответственности V. I. Potapov [et al.]
Место публикации Tomsk
Имя издателя TPU Press
Дата публикации 2016
-- 2016
453 ## - Перевод
Заглавие Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering
453 ## - Перевод
Заглавие Vol. 327, № 8
461 #1 - Уровень набора
Идентификатор записи (RuTPU)RU\TPU\book\312844
Международный стандартный сериальный номер (ISSN) 2413-1830
Заглавие Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов
Первые сведения об ответственности Национальный исследовательский Томский политехнический университет (ТПУ)
Дата публикации 2015-
463 #1 - Уровень физической единицы
Идентификатор записи (RuTPU)RU\TPU\book\347117
Заглавие Т. 327, № 8
Обозначение тома [С. 44-51]
Дата публикации 2016
610 1# - Неконтролируемые предметные термины
Предметный термин электронный ресурс
610 1# - Неконтролируемые предметные термины
Предметный термин анализ
610 1# - Неконтролируемые предметные термины
Предметный термин данные
610 1# - Неконтролируемые предметные термины
Предметный термин нейронные сети
610 1# - Неконтролируемые предметные термины
Предметный термин прогнозирование
610 1# - Неконтролируемые предметные термины
Предметный термин электропотребление
610 1# - Неконтролируемые предметные термины
Предметный термин электроэнергия
610 1# - Неконтролируемые предметные термины
Предметный термин оптовые рынки
610 1# - Неконтролируемые предметные термины
Предметный термин мощности
610 ## - Неконтролируемые предметные термины
Предметный термин data mining
610 ## - Неконтролируемые предметные термины
Предметный термин neural network
610 ## - Неконтролируемые предметные термины
Предметный термин forecasting
610 ## - Неконтролируемые предметные термины
Предметный термин electricity load
610 ## - Неконтролируемые предметные термины
Предметный термин wholesale electricity and capacity market
701 #1 - Имя лица – альтернативная ответственность
Начальный элемент ввода Потапов
Часть имени, кроме начального элемента ввода В. И.
Расширение инициалов личного имени Виктор Ильич
-- z01712
701 #1 - Имя лица – альтернативная ответственность
Начальный элемент ввода Грицай
Часть имени, кроме начального элемента ввода А. С.
Расширение инициалов личного имени Александр Сергеевич
-- z02712
701 #1 - Имя лица – альтернативная ответственность
Начальный элемент ввода Тюньков
Часть имени, кроме начального элемента ввода Д. А.
Расширение инициалов личного имени Дмитрий Александрович
-- z03712
701 #1 - Имя лица – альтернативная ответственность
Начальный элемент ввода Синицин
Часть имени, кроме начального элемента ввода Г. Э.
Расширение инициалов личного имени Глеб Эдуардович
-- z04712
712 02 - Наименование организации – вторичная ответственность
Начальный элемент ввода Омский государственный технический университет (ОмГТУ)
Идентифицирующий признак (1993- )
-- stltpush
Идентификатор авторитетной/ нормативной записи (RuTPU)RU\TPU\col\394
-- z01701
712 02 - Наименование организации – вторичная ответственность
Начальный элемент ввода Омский государственный технический университет (ОмГТУ)
Идентифицирующий признак (1993- )
-- stltpush
Идентификатор авторитетной/ нормативной записи (RuTPU)RU\TPU\col\394
-- z02701
712 02 - Наименование организации – вторичная ответственность
Начальный элемент ввода Омский государственный технический университет (ОмГТУ)
Идентифицирующий признак (1993- )
-- stltpush
Идентификатор авторитетной/ нормативной записи (RuTPU)RU\TPU\col\394
-- z03701
712 02 - Наименование организации – вторичная ответственность
Начальный элемент ввода Омская энергосбытовая компания
Идентифицирующий признак Общество с ограниченной ответственностью
-- (Омск)
-- z04701
801 #2 - Источник записи
Страна RU
Организация 63413507
Дата составления 20160902
Правила каталогизации PSBO
856 4# - Местонахождение электронных ресурсов и доступ к ним
Универсальный идентификатор ресурса http://earchive.tpu.ru/bitstream/11683/31303/1/bulletin_tpu-2016-v327-i8-04.pdf
090 ## - System Control Numbers (Koha)
Koha biblioitem number (autogenerated) 321589
942 ## - Добавленные элементы ввода (Коха)
Тип документа Computer Files

Нет доступных единиц.