Vector fields of zero total curvature of the second type in fore-dimension space [Electronic resource] / N. М. Onishchyk, D. L. Narezhneva
Уровень набора: (RuTPU)RU\TPU\book\169973, Bulletin of the Tomsk Polytechnic University / Tomsk Polytechnic University (TPU) = 2006-2007Язык: английский ; оригинала, русский.Страна: Россия.Описание: 1 файл (362 Кб)Серия: Mathematics and mechanics. PhysicsРезюме или реферат: Geometry of flat vector fields for which total curvature of the second kind equals zero in a domain of four-dimensional Euclidean space has been studied. These vector fields are classified depending on rank of the fundamental linear operator. Geometrical properties of Non-holonomic Pfaffian variety orthogonal to the vector field are investigated for each class. An example of a vector field with constant nonholonomicity vector different from zero is constructed. The research is carried out by the Cartan's method of exterior forms within moving frames..Примечания о наличии в документе библиографии/указателя: [Bibliography: p. 42 (4 titles)].Тематика: vector fields | zero total curvature | fore-dimension space | geometry | Euclidean space | linear operators | geometrical properties | Pfaffian variety | non-holonomic variety | classes | nonholonomicity | researches | Cartan's method of exterior forms | moving frames | электронный ресурс Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Заглавие с титульного листа
Электронная версия печатной публикации
[Bibliography: p. 42 (4 titles)]
Geometry of flat vector fields for which total curvature of the second kind equals zero in a domain of four-dimensional Euclidean space has been studied. These vector fields are classified depending on rank of the fundamental linear operator. Geometrical properties of Non-holonomic Pfaffian variety orthogonal to the vector field are investigated for each class. An example of a vector field with constant nonholonomicity vector different from zero is constructed. The research is carried out by the Cartan's method of exterior forms within moving frames.
Adobe Reader
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.