Термодинамический анализ процесса алкилирования бензола пропиленом / А. А. Чудинова [и др.]

Уровень набора: (RuTPU)RU\TPU\book\312844, 2413-1830, Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов / Национальный исследовательский Томский политехнический университет (ТПУ) = 2015- Альтернативный автор-лицо: Чудинова, А. А., Алена Анатольевна;Нурмаканова, А. Е., Асем Еслямбековна;Салищева, А. А., Анастасия Александровна;Ивашкина, Е. Н., химик-технолог, доцент Томского политехнического университета, кандидат технических наук, 1983-, Елена НиколаевнаКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Институт природных ресурсов (ИПР), Кафедра химической технологии топлива и химической кибернетики (ХТТ);Национальный исследовательский Томский политехнический университет (ТПУ), Институт природных ресурсов (ИПР), Кафедра химической технологии топлива и химической кибернетики (ХТТ);Национальный исследовательский Томский политехнический университет (ТПУ), Институт природных ресурсов (ИПР), Кафедра химической технологии топлива и химической кибернетики (ХТТ);Национальный исследовательский Томский политехнический университет (ТПУ), Институт природных ресурсов (ИПР), Кафедра химической технологии топлива и химической кибернетики (ХТТ)Язык: русский.Страна: Россия.Описание: 1 файл (245 Kb)Резюме или реферат: Актуальность работы обусловлена широким применением процессов алкилирования в промышленности и необходимостью создания адекватной по своей прогнозирующей способности математической модели, пригодной для решения технологических задач производства изопропилбензола в присутствии хлорида алюминия. Цель работы: определение и исследование термодинамических и кинетических закономерностей процесса алкилирования бензола пропиленом в присутствии хлорида алюминия с использованием методов квантовой химии. Методы исследования: электронно-структурный метод, основанный на теории функционала плотности (ТФП, DFT) на уровне B3LYP. Поиск переходных состояний реакций в присутствии кислот Льюиса был выполнен методом QST2 на уровне B3LYP/6-31++G(d,p) и LSDA/6-31++G(d,p). Результаты. Определенные с использованием методов квантовой химии термодинамические параметры основных реакций, протекающих в процессе получения кумола, позволили выполнить сравнение двух конкурирующих реакций - алкилирования и трансалкилирования. В результате было определено, что первая реакция обладает наименьшей энергией активации (для реакции алкилирования бензола пропиленом 150,94 кДж/моль при значении предэкспоненциального множителя в уравнении Аррениуса 1,58×105 , для реакции трансалкилирования энергия активации и предэкспоненциальный множитель в уравнении Аррениуса равны 156,13 кДж/моль и 5,34×104 , соответственно). Установленные закономерности легли в основу математической модели процесса алкилирования, которая позволяет прогнозировать качество получаемого алкилата в зависимости от режима проведения процесса в реакторе алкилирования. Погрешность расчетов по модели таких показателей, как выход целевого продукта изопропилбензола и побочных компонентов, определяющих качество продукта (н-пропилбензола, этилбензола, полиалкилбензолов), не превышает 7-10 %.; Relevance of the research is caused by broad application of alkylation in industry and the necessity to develop a mathematical model adequate on the predicting ability and suitable for solving the technological problems in producing cumene with aluminum chloride. The main aim of the study is to define and to study the thermodynamic and kinetic regularities of benzene alkylation with propylene in the presence of aluminum chloride applying the methods of quantum chemistry. The methods used in the study: electronic-structural method based on density functional theory (DFT, DFT) at B3LYP. Search for transition state of the reaction in the presence of Lewis acids was performed by QST2 at B3LYP / 6-31 ++ G(d,p) and LSDA / 6-31 ++ G(d,p). The results. The thermodynamic parameters of the main reactions, defined by the methods of quantum chemistry, proceeding in the course of obtaining cumene, allowed comparing two competing reactions - alkylation and transalkylation. As a result it was ascertained that the first reaction possesses the lowest activation energy (for benzene alkylation with propylene it is 150,94 kJ/mol at preexponential multiplier value in Arrhenius's 1,58×105 equation, for transalkylation reaction the activation energy and a preexponential multiplier in Arrhenius's equation equal 156,13 kJ/mol and 5,34×104 , respectively). The regularities determined became the basis of the mathematical model of the alkylation process that allows predicting the quality of the alkylate depending on the process mode in the alkylation reactor. Accuracy of calculations by the model of such indicators as the yield of main and secondary components that determine the quality of the product (n-propylbenzene, ethylbenzene, polyalkilbenzenes) does not exceed 7-10 %..Примечания о наличии в документе библиографии/указателя: [Библиогр.: с. 127 (20 назв.)].Тематика: электронный ресурс | труды учёных ТПУ | бензол | пропилен | изопропилбензол | переходное состояние | энергетический профиль реакции | benzene | propylene | cumene | transition state | energy profile of reaction Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Заглавие с титульного листа

Электронная версия печатной публикации

[Библиогр.: с. 127 (20 назв.)]

Актуальность работы обусловлена широким применением процессов алкилирования в промышленности и необходимостью создания адекватной по своей прогнозирующей способности математической модели, пригодной для решения технологических задач производства изопропилбензола в присутствии хлорида алюминия. Цель работы: определение и исследование термодинамических и кинетических закономерностей процесса алкилирования бензола пропиленом в присутствии хлорида алюминия с использованием методов квантовой химии. Методы исследования: электронно-структурный метод, основанный на теории функционала плотности (ТФП, DFT) на уровне B3LYP. Поиск переходных состояний реакций в присутствии кислот Льюиса был выполнен методом QST2 на уровне B3LYP/6-31++G(d,p) и LSDA/6-31++G(d,p). Результаты. Определенные с использованием методов квантовой химии термодинамические параметры основных реакций, протекающих в процессе получения кумола, позволили выполнить сравнение двух конкурирующих реакций - алкилирования и трансалкилирования. В результате было определено, что первая реакция обладает наименьшей энергией активации (для реакции алкилирования бензола пропиленом 150,94 кДж/моль при значении предэкспоненциального множителя в уравнении Аррениуса 1,58×105 , для реакции трансалкилирования энергия активации и предэкспоненциальный множитель в уравнении Аррениуса равны 156,13 кДж/моль и 5,34×104 , соответственно). Установленные закономерности легли в основу математической модели процесса алкилирования, которая позволяет прогнозировать качество получаемого алкилата в зависимости от режима проведения процесса в реакторе алкилирования. Погрешность расчетов по модели таких показателей, как выход целевого продукта изопропилбензола и побочных компонентов, определяющих качество продукта (н-пропилбензола, этилбензола, полиалкилбензолов), не превышает 7-10 %.

Relevance of the research is caused by broad application of alkylation in industry and the necessity to develop a mathematical model adequate on the predicting ability and suitable for solving the technological problems in producing cumene with aluminum chloride. The main aim of the study is to define and to study the thermodynamic and kinetic regularities of benzene alkylation with propylene in the presence of aluminum chloride applying the methods of quantum chemistry. The methods used in the study: electronic-structural method based on density functional theory (DFT, DFT) at B3LYP. Search for transition state of the reaction in the presence of Lewis acids was performed by QST2 at B3LYP / 6-31 ++ G(d,p) and LSDA / 6-31 ++ G(d,p). The results. The thermodynamic parameters of the main reactions, defined by the methods of quantum chemistry, proceeding in the course of obtaining cumene, allowed comparing two competing reactions - alkylation and transalkylation. As a result it was ascertained that the first reaction possesses the lowest activation energy (for benzene alkylation with propylene it is 150,94 kJ/mol at preexponential multiplier value in Arrhenius's 1,58×105 equation, for transalkylation reaction the activation energy and a preexponential multiplier in Arrhenius's equation equal 156,13 kJ/mol and 5,34×104 , respectively). The regularities determined became the basis of the mathematical model of the alkylation process that allows predicting the quality of the alkylate depending on the process mode in the alkylation reactor. Accuracy of calculations by the model of such indicators as the yield of main and secondary components that determine the quality of the product (n-propylbenzene, ethylbenzene, polyalkilbenzenes) does not exceed 7-10 %.

Adobe Reader

Для данного заглавия нет комментариев.

оставить комментарий.