Stacking Interactions: A Supramolecular Approach to Upgrade Weak Halogen Bond Donors / S. V. Baykov, D. M. Ivanov, S. O. Kasatkina [et al.]
Уровень набора: Chemistry - A European JournalЯзык: английский.Резюме или реферат: The co-crystallization of tetracyanobenzene (TCB) with haloarenes ArX provided six new co-crystals TCB ⋅ ArX (ArX=PhCl, PhBr, 4-MeC6H4Cl, 4-MeC6H4Br, 4-MeOC6H4Cl, 1,2-Br2C6H4) which were studied by X-ray diffraction. In these systems, the strong collective effect of π⋅⋅⋅π stacking interactions and lone pair-(X)⋅⋅⋅π-hole-(C) bondings between TCB and ArX promote the strength of X⋅⋅⋅Ncyano halogen bonding (HaB). Theoretical studies showed that the stacking interactions affect the σ-hole depth of the haloarenes, thus significantly boosting their ability to function as HaB donors. According to the molecular electrostatic potential calculations, the σ- hole-(Cl) value (1.5 kcal/mol) in the haloarene 4-MeOC6H4Cl (featuring an electron-rich arene moiety and exhibiting very poor σ-hole-(Cl) ability) increases significantly in the stacked trimer (TCB)2 ⋅ 4-MeOC6H4Cl (12.5 kcal/mol). Theoretical DFT calculations demonstrate the dramatic increase of X⋅⋅⋅Ncyano HaB strength for stacked trimers in comparison with parent unstacked haloarenes..Примечания о наличии в документе библиографии/указателя: [References: 88 tit.].Аудитория: .Тематика: труды учёных ТПУ | электронный ресурс | crystal engineering | DFT calculations | halogen bonding | noncovalent interactions | staking | кристаллотехника | галогенные связи | нековалентные взаимодействия Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 88 tit.]
The co-crystallization of tetracyanobenzene (TCB) with haloarenes ArX provided six new co-crystals TCB ⋅ ArX (ArX=PhCl, PhBr, 4-MeC6H4Cl, 4-MeC6H4Br, 4-MeOC6H4Cl, 1,2-Br2C6H4) which were studied by X-ray diffraction. In these systems, the strong collective effect of π⋅⋅⋅π stacking interactions and lone pair-(X)⋅⋅⋅π-hole-(C) bondings between TCB and ArX promote the strength of X⋅⋅⋅Ncyano halogen bonding (HaB). Theoretical studies showed that the stacking interactions affect the σ-hole depth of the haloarenes, thus significantly boosting their ability to function as HaB donors. According to the molecular electrostatic potential calculations, the σ- hole-(Cl) value (1.5 kcal/mol) in the haloarene 4-MeOC6H4Cl (featuring an electron-rich arene moiety and exhibiting very poor σ-hole-(Cl) ability) increases significantly in the stacked trimer (TCB)2 ⋅ 4-MeOC6H4Cl (12.5 kcal/mol). Theoretical DFT calculations demonstrate the dramatic increase of X⋅⋅⋅Ncyano HaB strength for stacked trimers in comparison with parent unstacked haloarenes.
Для данного заглавия нет комментариев.