Obtaining the fine-grained silicon carbide, used in the synthesis of construction ceramics [Electronic resource] / V. A. Karelin [et al.]

Уровень набора: (RuTPU)RU\TPU\prd\247369, 2405-6537, Resource-Efficient Technologies, electronic scientific journal / National Research Tomsk Polytechnic University (TPU) = 2015-Альтернативный автор-лицо: Karelin, V. A., chemist, Professor of Tomsk Polytechnic University, Doctor of technical sciences, 1960-, Vladimir Aleksandrovich;Strashko, A. N., Chemical Engineer, assistant Tomsk Polytechnic University, candidate of technical Sciences, 1984-, Aleksander Nikolaevich;Sazonov, A. V.;Dubrovin, A. V.Коллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Физико-технический институт (ФТИ), Кафедра химической технологии редких, рассеянных и радиоактивных элементов (№ 43) (ХТРЭ)Язык: английский.Страна: Россия.Резюме или реферат: Silicon carbide is used in the production of construction and temperature-resistant goods, capable of withstanding high mechanical and thermal loads. During recent times, silicon carbide has been frequently used in the electronics industry. Since sintered silicon carbide has increasingly been used as a replacement for metal components of various devices, the process of obtaining compact goods from silicon powder has become the defining factor in the technology used for its synthesis. The selection of conditions in which the sintering is conducted depends on granulometric structure, the form and the surface condition of the initial powder. The work consists of the synthesis of silicon carbide powder using the purified form of metallurgical silicon powder and soot. The qualities of testing samples were studied, where silicon carbide was obtained using established technology, from mechanically activated elementary, fine-grained silicon and soot, by pyrolytic synthesis. It was demonstrated that synthesis produces highly pure silicon carbide powder, (α- and β-phases) with a granulometric composition that allowed subsequent sintering to produce high quality compact goods. It was established that the content of silica in synthesized silicon carbide powder does not exceed 1-2% of the total mass..Примечания о наличии в документе библиографии/указателя: [References: p. 60 (22 tit.)].Тематика: труды учёных ТПУ | электронный ресурс | карбид кремния | гистограммы | термостойкость | электронная промышленность | спекание Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: p. 60 (22 tit.)]

Silicon carbide is used in the production of construction and temperature-resistant goods, capable of withstanding high mechanical and thermal loads. During recent times, silicon carbide has been frequently used in the electronics industry. Since sintered silicon carbide has increasingly been used as a replacement for metal components of various devices, the process of obtaining compact goods from silicon powder has become the defining factor in the technology used for its synthesis. The selection of conditions in which the sintering is conducted depends on granulometric structure, the form and the surface condition of the initial powder. The work consists of the synthesis of silicon carbide powder using the purified form of metallurgical silicon powder and soot. The qualities of testing samples were studied, where silicon carbide was obtained using established technology, from mechanically activated elementary, fine-grained silicon and soot, by pyrolytic synthesis. It was demonstrated that synthesis produces highly pure silicon carbide powder, (α- and β-phases) with a granulometric composition that allowed subsequent sintering to produce high quality compact goods. It was established that the content of silica in synthesized silicon carbide powder does not exceed 1-2% of the total mass.

Для данного заглавия нет комментариев.

оставить комментарий.