Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity [Electronic resource] / M. Gomathi [et al.]
Уровень набора: (RuTPU)RU\TPU\prd\247369, 2405-6537, Resource-Efficient Technologies, electronic scientific journal / National Research Tomsk Polytechnic University (TPU) = 2015-Язык: английский.Страна: Россия.Резюме или реферат: Silver nanoparticles of 15-20 nm size with spherical shape were synthesized from green synthesis method using Datura stramonium leaf extract. Synthesized Ag NPs were studied for their optical, structural, surface morphological and antibacterial properties. The optical study shows that the appearance of SPR peak at 444 nm in the absorption spectrum is affirming the formation of Ag NPs and its high intensity with narrowed width indicating the homogenous size and shape of the Ag NPs. Structural studies reveal the good crystalline nature of face center cubic structure of Ag crystal and preferentially oriented along (111) plane with average crystallite size of 18 nm. FTIR analysis exhibits the possible reducing biomolecules within the leaf extract. The well defined homogenous spherical shape of the Ag NPs is clearly observed from the TEM studies and lattice fringes spacing of 0.23 nm shows the high crystalline nature of the synthesized Ag NPs. EDAX profile affirms the Ag crystal by the presence of energy peak at 3 eV. The synthesized Ag NPs showed antibacterial activity against E. coli and S. aureus bacteria. However, well pronounced activity was observed against E. coli..Примечания о наличии в документе библиографии/указателя: [References: p. 283-284 (28 tit.)].Тематика: труды учёных ТПУ | электронный ресурс | synthesis | morphology | antibacterial | синтез | морфология Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: p. 283-284 (28 tit.)]
Silver nanoparticles of 15-20 nm size with spherical shape were synthesized from green synthesis method using Datura stramonium leaf extract. Synthesized Ag NPs were studied for their optical, structural, surface morphological and antibacterial properties. The optical study shows that the appearance of SPR peak at 444 nm in the absorption spectrum is affirming the formation of Ag NPs and its high intensity with narrowed width indicating the homogenous size and shape of the Ag NPs. Structural studies reveal the good crystalline nature of face center cubic structure of Ag crystal and preferentially oriented along (111) plane with average crystallite size of 18 nm. FTIR analysis exhibits the possible reducing biomolecules within the leaf extract. The well defined homogenous spherical shape of the Ag NPs is clearly observed from the TEM studies and lattice fringes spacing of 0.23 nm shows the high crystalline nature of the synthesized Ag NPs. EDAX profile affirms the Ag crystal by the presence of energy peak at 3 eV. The synthesized Ag NPs showed antibacterial activity against E. coli and S. aureus bacteria. However, well pronounced activity was observed against E. coli.
Для данного заглавия нет комментариев.