Properties of an axially periodic magnetic field in a betatron / A. A. Zvontsov, A. А. Filinova, V. L. Chakhlov

Уровень набора: Soviet physics. Technical physics = 1931Основной Автор-лицо: Zvontsov, A. A., Physicist, Senior researcher of Tomsk Polytechnic University, Candidate of technical sciences, 1940-, Aleksander AkimovichАльтернативный автор-лицо: Filinova, A. А.;Chakhlov, V. L., physicist, Honored worker of science and technology of the Russian Federation, Honored Professor of Tomsk Polytechnic University, Doctor ofTechnical Sciences (DSc), 1934-2011, Vladimir Lukianovich, 070Язык: английский.Страна: Россия.Резюме или реферат: It is shown by solving an equation for the vector potential A(r, z) of the magnetic field that under appropriate conditions the focusing properties of a betatron magnetic field are periodic with respect to the z coordinate. Under these conditions there may be several equilibrium orbits lying in parallel planes z equals O, z equals z//0//1 . . . , z equals mz//0//1 in the accelerator. An equation is derived for the distance z//0//1 between the equilbrium orbit planes for a given orbit radius r//0 and field decay exponent n//0. The operation of such accelerators is described..Аудитория: .Тематика: труды учёных ТПУ
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

It is shown by solving an equation for the vector potential A(r, z) of the magnetic field that under appropriate conditions the focusing properties of a betatron magnetic field are periodic with respect to the z coordinate. Under these conditions there may be several equilibrium orbits lying in parallel planes z equals O, z equals z//0//1 . . . , z equals mz//0//1 in the accelerator. An equation is derived for the distance z//0//1 between the equilbrium orbit planes for a given orbit radius r//0 and field decay exponent n//0. The operation of such accelerators is described.

Для данного заглавия нет комментариев.

оставить комментарий.