Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation / A. L. Lisok, A. V. Shapovalov, A. Yu. Trifonov

Основной Автор-лицо: Lisok, A. L., physicist, Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences, 1981-, Aleksandr LeonidovichАльтернативный автор-лицо: Shapovalov, A. V., mathematician, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1949-, Aleksandr Vasilyevich;Trifonov, A. Yu., physicist, mathematician, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1963-, Andrey YurievichЯзык: английский.Страна: .Резюме или реферат: We consider the symmetry properties of an integro-differential multidimensional Gross-Pitaevskii equation with a nonlocal nonlinear (cubic) term in the context of symmetry analysis using the formalism of semiclassical asymptotics. This yields a semiclassically reduced nonlocal Gross-Pitaevskii equation, which can be treated as a nearly linear equation, to determine the principal term of the semiclassical asymptotic solution. Our main result is an approach which allows one to construct a class of symmetry operators for the reduced Gross-Pitaevskii equation. These symmetry operators are determined by linear relations including intertwining operators and additional algebraic conditions. The basic ideas are illustrated with a 1D reduced Gross-Pitaevskii equation. The symmetry operators are found explicitly, and the corresponding families of exact solutions are obtained.Примечания о наличии в документе библиографии/указателя: [References: 34 tit.].Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 34 tit.]

We consider the symmetry properties of an integro-differential multidimensional Gross-Pitaevskii equation with a nonlocal nonlinear (cubic) term in the context of symmetry analysis using the formalism of semiclassical asymptotics. This yields a semiclassically reduced nonlocal Gross-Pitaevskii equation, which can be treated as a nearly linear equation, to determine the principal term of the semiclassical asymptotic solution. Our main result is an approach which allows one to construct a class of symmetry operators for the reduced Gross-Pitaevskii equation. These symmetry operators are determined by linear relations including intertwining operators and additional algebraic conditions. The basic ideas are illustrated with a 1D reduced Gross-Pitaevskii equation. The symmetry operators are found explicitly, and the corresponding families of exact solutions are obtained

Для данного заглавия нет комментариев.

оставить комментарий.