Numerical simulation of the one-dimensional population dynamics with nonlocal competitive losses and convection / V. A. Aleutdinova [et al.]
Уровень набора: Russian Physics Journal, Scientific JournalЯзык: английский.Страна: .Резюме или реферат: Numerical solutions of the generalized one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with nonlocal competitive losses and convection are constructed. The influence function for nonlocal losses is chosen in the form of a Gaussian distribution. The effect of convection on the dynamics of the spatially inhomogeneous distribution of the population density is investigated.Примечания о наличии в документе библиографии/указателя: [References: p. 484 (11 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References: p. 484 (11 tit.)]
Numerical solutions of the generalized one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with nonlocal competitive losses and convection are constructed. The influence function for nonlocal losses is chosen in the form of a Gaussian distribution. The effect of convection on the dynamics of the spatially inhomogeneous distribution of the population density is investigated
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.