Quasi-energy spectral series and the Aharonov-Anandan phase for the nonlocal Gross--Pitaevsky equation / A. L. Lisok, A. Yu. Trifonov, A. V. Shapovalov

Основной Автор-лицо: Lisok, A. L., physicist, Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences, 1981-, Aleksandr LeonidovichАльтернативный автор-лицо: Trifonov, A. Yu., physicist, mathematician, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1963-, Andrey Yurievich;Shapovalov, A. V., mathematician, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1949-, Aleksandr VasilyevichЯзык: английский.Страна: .Резюме или реферат: For the nonlocal T-periodic Gross–Pitaevsky operator, formal solutions of the Floquet problem asymptotic in small parameter h, h-- 0, up to Q(h3/2) have been constructed. The quasi-energy spectral series found correspond to the closed phase trajectories of the Hamilton–Ehrenfest system which are stable in the linear approximation. The monodromy operator of this equation has been constructed to within Q(h3/2) in the class of trajectory-concentrated functions. The Aharonov–Anandan phases have been calculated for the quasi-energy states.Примечания о наличии в документе библиографии/указателя: [References: 28 tit.].Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 28 tit.]

For the nonlocal T-periodic Gross–Pitaevsky operator, formal solutions of the Floquet problem asymptotic in small parameter h, h-- 0, up to Q(h3/2) have been constructed. The quasi-energy spectral series found correspond to the closed phase trajectories of the Hamilton–Ehrenfest system which are stable in the linear approximation. The monodromy operator of this equation has been constructed to within Q(h3/2) in the class of trajectory-concentrated functions. The Aharonov–Anandan phases have been calculated for the quasi-energy states

Для данного заглавия нет комментариев.

оставить комментарий.