Semiclassical Approach to the Geometric Phase Theory for the Hartree Type Equation / A. V. Shapovalov, A. Yu. Trifonov, A. L. Lisok

Основной Автор-лицо: Shapovalov, A. V., mathematician, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1949-, Aleksandr VasilyevichАльтернативный автор-лицо: Trifonov, A. Yu., physicist, mathematician, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1963-, Andrey Yurievich;Lisok, A. L., physicist, Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences, 1981-, Aleksandr LeonidovichЯзык: английский.Страна: .Резюме или реферат: Quasi-energy states and a spectrum of quasi-energies asymptotic in small parameter h (h-0) are constructed for a multidimensional Hartree type equation with non-local nonlinearity and with an external field cyclic in time. The quasi-energy states are a special case of trajectory coherent solutions of the Hartree type equation, which belong to the class of semiclassically concentrated functions. A function of this class describes a solitary wave localized in a neighborhood of a phase trajectory in the space of moments of the solution. The phase trajectory is closed due to the configuration of the external field. The Aharonov-Anandan geometric phases, which characterize a system “as a whole”, are found for the quasi-energy states in a semiclassical approximation accurate to O(h3/2), h-0.Примечания о наличии в документе библиографии/указателя: [References: p. 1465 (17 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: p. 1465 (17 tit.)]

Quasi-energy states and a spectrum of quasi-energies asymptotic in small parameter h (h-0) are constructed for a multidimensional Hartree type equation with non-local nonlinearity and with an external field cyclic in time. The quasi-energy states are a special case of trajectory coherent solutions of the Hartree type equation, which belong to the class of semiclassically concentrated functions. A function of this class describes a solitary wave localized in a neighborhood of a phase trajectory in the space of moments of the solution. The phase trajectory is closed due to the configuration of the external field. The Aharonov-Anandan geometric phases, which characterize a system “as a whole”, are found for the quasi-energy states in a semiclassical approximation accurate to O(h3/2), h-0

Для данного заглавия нет комментариев.

оставить комментарий.