The Geometric Phases and Quasienergy Spectral Series of a Hartree-Type Equation with a Quadratic Potential / A. L. Lisok [et al.]
Уровень набора: Russian Physics Journal, Scientific JournalЯзык: английский.Страна: .Резюме или реферат: Based on the ideology of the complex WKB–Maslov method, the general construction of quasiclassically concentrated solutions is given for Hartree-type equations with a quadratic potential and periodic coefficients. Exact expressions are constructed for the quasienergies and associated quasienergy states. In the construction of solutions, an important role is played by the Hamilton–Ehrenfest system of equations obtained in this work. Explicit expressions are found for the geometric phase of Aharonov–Anandan quasienergy states.Примечания о наличии в документе библиографии/указателя: [References: p. 413 (30 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References: p. 413 (30 tit.)]
Based on the ideology of the complex WKB–Maslov method, the general construction of quasiclassically concentrated solutions is given for Hartree-type equations with a quadratic potential and periodic coefficients. Exact expressions are constructed for the quasienergies and associated quasienergy states. In the construction of solutions, an important role is played by the Hamilton–Ehrenfest system of equations obtained in this work. Explicit expressions are found for the geometric phase of Aharonov–Anandan quasienergy states
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.