Peculiarities of resonance chaos suppression in populations with non-overlapping generations / E. V. Evdokimov, K. E. Evdokimov, A. V. Shapovalov

Уровень набора: Physica D: Nonlinear Phenomena, Scientific JournalОсновной Автор-лицо: Evdokimov, E. V.Альтернативный автор-лицо: Evdokimov, K. E., physicist, Senior Lecturer of Tomsk Polytechnic University, Candidate of physical and mathematical sciences, 1976-, Kirill Evgenievich;Shapovalov, A. V., mathematician, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1949-, Aleksandr VasilyevichЯзык: английский.Страна: .Резюме или реферат: Peculiarities of the resonance chaos suppression (RCS) phenomenon are studied for biological populations with non-overlapping generations under a periodic perturbation of the Malthusian and carrying capacity parameters for the two-parameter Ricker map model. This phenomenon is shown to be described by splitting structures in the resonance neighborhood that differ from classical unimodal curves. The perturbation amplitude sufficient for the RCS may be very small compared to the parameter values. The periodical changes from a chaotic pattern to a cyclic one are found for the population dynamics when the perturbation periods have definite values. The hierarchy of oscillation regimes arises with periods that differ by several orders of magnitude.Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | chaos suppression | population dynamics Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

Peculiarities of the resonance chaos suppression (RCS) phenomenon are studied for biological populations with non-overlapping generations under a periodic perturbation of the Malthusian and carrying capacity parameters for the two-parameter Ricker map model. This phenomenon is shown to be described by splitting structures in the resonance neighborhood that differ from classical unimodal curves. The perturbation amplitude sufficient for the RCS may be very small compared to the parameter values. The periodical changes from a chaotic pattern to a cyclic one are found for the population dynamics when the perturbation periods have definite values. The hierarchy of oscillation regimes arises with periods that differ by several orders of magnitude

Для данного заглавия нет комментариев.

оставить комментарий.