Hamiltonian dynamics of Darwin systems / A. V. Shapovalov, E. V. Evdokimov
Уровень набора: Physica D: Nonlinear Phenomena, Scientific JournalЯзык: английский.Страна: .Резюме или реферат: We present a Hamiltonian approach for the well-known Eigen model of the Darwin selection dynamics. Hamiltonization is carried out by means of the embedding of the population variable space, describing behavior of the system, into the space of double dimension by introducing auxiliary dynamic variables. Besides the study of the formalism, we try to interpret its basic elements (phase space, Hamiltonian, geometry of solutions) in terms of theoretical biology. A geometric treatment is given for the considered system dynamics in terms of the geodesic flows in the Euclidean space where the population variables serve as curvilinear coordinates.Time evolution of the distribution function is found for arbitrary distributed initial values of the population variables.Примечания о наличии в документе библиографии/указателя: [References: p. 450 (5 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | Darwin systems | population dynamics | Hamiltonian formalism Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: p. 450 (5 tit.)]
We present a Hamiltonian approach for the well-known Eigen model of the Darwin selection dynamics. Hamiltonization is carried out by means of the embedding of the population variable space, describing behavior of the system, into the space of double dimension by introducing auxiliary dynamic variables. Besides the study of the formalism, we try to interpret its basic elements (phase space, Hamiltonian, geometry of solutions) in terms of theoretical biology. A geometric treatment is given for the considered system dynamics in terms of the geodesic flows in the Euclidean space where the population variables serve as curvilinear coordinates.Time evolution of the distribution function is found for arbitrary distributed initial values of the population variables
Для данного заглавия нет комментариев.