Some problems of symmetry of the Schrodinger equations / V. G. Bagrov, B. F. Samsonov, A. V. Shapovalov

Уровень набора: Soviet Physics Journal, Scientific JournalАльтернативный автор-лицо: Bagrov, V. G.;Samsonov, B. F.;Shapovalov, A. V., mathematician, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1949-, Aleksandr VasilyevichЯзык: английский.Страна: .Резюме или реферат: The Schrцdinger algebra sch3 is examined as a subalgebra of the algebra k1,4 of conformal transformations of the space R1, 4. Orbits of the associated representations of the Schrцdinger group are found in the algebra sch3. It is proven that all nontrivial local differential symmetry operators of second order belong to the enveloping algebra U(sch3) of the algebra sch3, and the space of these operators is defined. All the absolute identities and identities on the solutions of the Schrцdinger equation are obtained in the space of second-order operators of the algebra U(sch3).Примечания о наличии в документе библиографии/указателя: [References: p. 385 (4 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: p. 385 (4 tit.)]

The Schrцdinger algebra sch3 is examined as a subalgebra of the algebra k1,4 of conformal transformations of the space R1, 4. Orbits of the associated representations of the Schrцdinger group are found in the algebra sch3. It is proven that all nontrivial local differential symmetry operators of second order belong to the enveloping algebra U(sch3) of the algebra sch3, and the space of these operators is defined. All the absolute identities and identities on the solutions of the Schrцdinger equation are obtained in the space of second-order operators of the algebra U(sch3)

Для данного заглавия нет комментариев.

оставить комментарий.