The device for control objects identification: getting temporal dynamic characteristics / V. I. Goncharov, V. A. Onufriev, E. S. Perebeynosova

Уровень набора: Applied Mechanics and Materials, Scientific Journal Основной Автор-лицо: Goncharov, V. I., radio technician, specialist in the field of informatics and computer technology, Professor of Tomsk Polytechnic University, Doctor of technical sciences, 1937-, Valery IvanovichАльтернативный автор-лицо: Onufriev, V. A., Specialist in the field of information and computer sciences, Electronic engineer at Tomsk Polytechnic University, Vadim Alexandrovich;Perebeynosova, E. S., EkaterinaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Институт кибернетики (ИК), Кафедра интегрированных компьютерных систем управления (ИКСУ)Язык: английский.Страна: .Резюме или реферат: The authors consider the problem of numerical inversion of Laplace transform using its values of the Laplace-image defined on the positive real half-axis of the complex plane. The main distinction of the proposed path associated with the method of forming these values. This path is based on a special case of the direct formula of the Laplace transform, when complex variable degenerates into a real variable. As a result, they continue getting image-function, but these functions have an important feature for numerical problems – they have a real argument. The presence of a continuous-time function allows implementing her sampling more reasonably, for example, taking into account the properties of the differentiating features. One more attractive possibility – generalization sampling, conversion and interpolation algorithms for transfer functions with irrational and transcendental expressions. The paper presents the necessary information about obtaining of real functions images and their usage in problems of the Laplace transform inversion. The method is based on the representation of function originals as a segment of series on the exponential Chebyshev polynomials. An example is given..Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | системы автоматизированного управления | системы автоматического контроля | преобразование Лапласа Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

The authors consider the problem of numerical inversion of Laplace transform using its values of the Laplace-image defined on the positive real half-axis of the complex plane. The main distinction of the proposed path associated with the method of forming these values. This path is based on a special case of the direct formula of the Laplace transform, when complex variable degenerates into a real variable. As a result, they continue getting image-function, but these functions have an important feature for numerical problems – they have a real argument. The presence of a continuous-time function allows implementing her sampling more reasonably, for example, taking into account the properties of the differentiating features. One more attractive possibility – generalization sampling, conversion and interpolation algorithms for transfer functions with irrational and transcendental expressions. The paper presents the necessary information about obtaining of real functions images and their usage in problems of the Laplace transform inversion. The method is based on the representation of function originals as a segment of series on the exponential Chebyshev polynomials. An example is given.

Для данного заглавия нет комментариев.

оставить комментарий.