Dynamical realizations of l-conformal Newton–Hooke group / A. V. Galajinsky, I. V. Masterov

Уровень набора: Physics Letters B, Particle Physics, Nuclear Physics and CosmologyОсновной Автор-лицо: Galajinsky, A. V., Doctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT), Professor of the TPU, 1971-, Anton VladimirovichАльтернативный автор-лицо: Masterov, I. V., physicist, assistant at Tomsk Polytechnic University, 1987-, Ivan ViktorovichЯзык: английский.Страна: .Резюме или реферат: The method of nonlinear realizations and the technique previously developed in [A. Galajinsky, I. Masterov, Nucl. Phys. B 866 (2013) 212, arXiv:1208.1403] are used to construct a dynamical system without higher derivative terms, which holds invariant under the l-conformal Newton–Hooke group. A configuration space of the model involves coordinates, which parametrize a particle moving in d spatial dimensions and a conformal mode, which gives rise to an effective external field. The dynamical system describes a generalized multi-dimensional oscillator, which undergoes accelerated/decelerated motion in an ellipse in accord with evolution of the conformal mode. Higher derivative formulations are discussed as well. It is demonstrated that the multi-dimensional Pais–Uhlenbeck oscillator enjoys the View the MathML source-conformal Newton–Hooke symmetry for a particular choice of its frequencies..Примечания о наличии в документе библиографии/указателя: [References: p. 194-195 (24 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | dynamical realizations of l-conformal Newton–Hooke group | dynamical realizations | pais–Uhlenbeck oscillator Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: p. 194-195 (24 tit.)]

The method of nonlinear realizations and the technique previously developed in [A. Galajinsky, I. Masterov, Nucl. Phys. B 866 (2013) 212, arXiv:1208.1403] are used to construct a dynamical system without higher derivative terms, which holds invariant under the l-conformal Newton–Hooke group. A configuration space of the model involves coordinates, which parametrize a particle moving in d spatial dimensions and a conformal mode, which gives rise to an effective external field. The dynamical system describes a generalized multi-dimensional oscillator, which undergoes accelerated/decelerated motion in an ellipse in accord with evolution of the conformal mode. Higher derivative formulations are discussed as well. It is demonstrated that the multi-dimensional Pais–Uhlenbeck oscillator enjoys the View the MathML source-conformal Newton–Hooke symmetry for a particular choice of its frequencies.

Для данного заглавия нет комментариев.

оставить комментарий.