N=4 superconformal Calogero models / A. V. Galajinsky, O. Lechtenfeld, K. V. Polovnikov
Уровень набора: Journal of High Energy Physics, Scientific Journa = 1994-Язык: английский.Страна: .Резюме или реферат: We continue the research initiated in hep-th/0607215 and apply our method of conformal automorphisms to generate various N=4 superconformal quantum many-body systems on the real line from a set of decoupled particles extended by fermionic degrees of freedom. The su(1,1|2) invariant models are governed by two scalar potentials obeying a system of nonlinear partial differential equations which generalizes the Witten-Dijkgraaf-Verlinde-Verlinde equations. As an application, the N=4 superconformal extension of the three-particle (A-type) Calogero model generates a unique G_2-type Hamiltonian featuring three-body interactions. We fully analyze the N=4 superconformal three- and four-particle models based on the root systems of A_1 + G_2 and F_4, respectively. Beyond Wyllard's solutions we find a list of new models, whose translational non-invariance of the center-of-mass motion fails to decouple and extends even to the relative particle motion..Примечания о наличии в документе библиографии/указателя: [Ref.: (46 tit.)].Тематика: электронный ресурс | труды учёных ТПУ | модели Калоджеро | Calogero model | конформные преобразования | nonlocal conformal transformations | нелокальные конформные преобразования Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[Ref.: (46 tit.)]
We continue the research initiated in hep-th/0607215 and apply our method of conformal automorphisms to generate various N=4 superconformal quantum many-body systems on the real line from a set of decoupled particles extended by fermionic degrees of freedom. The su(1,1|2) invariant models are governed by two scalar potentials obeying a system of nonlinear partial differential equations which generalizes the Witten-Dijkgraaf-Verlinde-Verlinde equations. As an application, the N=4 superconformal extension of the three-particle (A-type) Calogero model generates a unique G_2-type Hamiltonian featuring three-body interactions. We fully analyze the N=4 superconformal three- and four-particle models based on the root systems of A_1 + G_2 and F_4, respectively. Beyond Wyllard's solutions we find a list of new models, whose translational non-invariance of the center-of-mass motion fails to decouple and extends even to the relative particle motion.
Для данного заглавия нет комментариев.