Quantum oscillator on CPn in a constant magnetic field / S. Bellucci, A. P. Nersessian, A. Yeranyan
Уровень набора: Physical Review D, Particles, Fields, Gravitation, and Cosmology, Scientific JournalЯзык: английский.Страна: .Резюме или реферат: We construct the quantum oscillator interacting with a constant magnetic field on complex projective spaces CPN, as well as on their noncompact counterparts, i.e., the N-dimensional Lobachewski spaces LN. We find the spectrum of this system and the complete basis of wave functions. Surprisingly, the inclusion of a magnetic field does not yield any qualitative change in the energy spectrum. For N>1 the magnetic field does not break the superintegrability of the system, whereas for N=1 it preserves the exact solvability of the system. We extend these results to the cones constructed over CPN and LN, and perform the Kustaanheimo-Stiefel transformation of these systems to the three dimensional Coulomb-like systems..Примечания о наличии в документе библиографии/указателя: [References: 16 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайнTitle screen
[References: 16 tit.]
We construct the quantum oscillator interacting with a constant magnetic field on complex projective spaces CPN, as well as on their noncompact counterparts, i.e., the N-dimensional Lobachewski spaces LN. We find the spectrum of this system and the complete basis of wave functions. Surprisingly, the inclusion of a magnetic field does not yield any qualitative change in the energy spectrum. For N>1 the magnetic field does not break the superintegrability of the system, whereas for N=1 it preserves the exact solvability of the system. We extend these results to the cones constructed over CPN and LN, and perform the Kustaanheimo-Stiefel transformation of these systems to the three dimensional Coulomb-like systems.
Для данного заглавия нет комментариев.