Action-angle variables for dihedral systems on the circle / O. Lechtenfeld, A. P. Nersessian, V. Yeghikyan
Уровень набора: Physics Letters A, Scientific JournalЯзык: английский.Страна: .Резюме или реферат: A nonrelativistic particle on a circle and subject to a cos−2(kφ) potential is related to the two-dimensional (dihedral) Coxeter system I2(k), for k∈N. For such ‘dihedral systems’ we construct the action-angle variables and establish a local equivalence with a free particle on the circle. We perform the quantization of these systems in the action-angle variables and discuss the supersymmetric extension of this procedure. By allowing radial motion one obtains related two-dimensional systems, including A2, BC2and G2 three-particle rational Calogero models on R, which we also analyze..Примечания о наличии в документе библиографии/указателя: [References: p. 4652 (24 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References: p. 4652 (24 tit.)]
A nonrelativistic particle on a circle and subject to a cos−2(kφ) potential is related to the two-dimensional (dihedral) Coxeter system I2(k), for k∈N. For such ‘dihedral systems’ we construct the action-angle variables and establish a local equivalence with a free particle on the circle. We perform the quantization of these systems in the action-angle variables and discuss the supersymmetric extension of this procedure. By allowing radial motion one obtains related two-dimensional systems, including A2, BC2and G2 three-particle rational Calogero models on R, which we also analyze.
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.