Hidden symmetries of integrable conformal mechanical systems / T. S. Akopyan (Hakobyan) [et al.]

Уровень набора: Physics Letters A, Scientific JournalАльтернативный автор-лицо: Akopyan (Hakobyan), T. S., physicist, Professor of Tomsk Polytechnic University, doctor of physical and mathematical sciences, 1965-, Tigran Stepanovich;Krivonos, S., Sergey;Lechtenfeld, O., Olaf;Nersessian, A. P., physicist, Professor of Tomsk Polytechnic University, 1964-, Armen PetrosovichЯзык: английский.Страна: .Резюме или реферат: We split the generic conformal mechanical system into a “radial” and an “angular” part, where the latter is defined as the Hamiltonian system on the orbit of the conformal group, with the Casimir function in the role of the Hamiltonian. We reduce the analysis of the constants of motion of the full system to the study of certain differential equations on this orbit. For integrable mechanical systems, the conformal invariance renders them superintegrable, yielding an additional series of conserved quantities originally found by Wojciechowski in the rational Calogero model. Finally, we show that, starting from any N=4supersymmetric “angular” Hamiltonian system one may construct a new system with full N=4superconformal D(1,2;α) symmetry..Примечания о наличии в документе библиографии/указателя: [References: p. 806 (18 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: p. 806 (18 tit.)]

We split the generic conformal mechanical system into a “radial” and an “angular” part, where the latter is defined as the Hamiltonian system on the orbit of the conformal group, with the Casimir function in the role of the Hamiltonian. We reduce the analysis of the constants of motion of the full system to the study of certain differential equations on this orbit. For integrable mechanical systems, the conformal invariance renders them superintegrable, yielding an additional series of conserved quantities originally found by Wojciechowski in the rational Calogero model. Finally, we show that, starting from any N=4supersymmetric “angular” Hamiltonian system one may construct a new system with full N=4superconformal D(1,2;α) symmetry.

Для данного заглавия нет комментариев.

оставить комментарий.