Effective dipole-moment operator for nonrigid H2X-type molecules. Application to H2O / V. I. Starikov , S. N. Mikhailenko

Уровень набора: Journal of Molecular Structure = 1957-Основной Автор-лицо: Starikov, V. I.Альтернативный автор-лицо: Mikhailenko, S. N., physicist, Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences, 1962-, Semen NikolaevichЯзык: английский.Страна: .Резюме или реферат: A theory of the transformed dipole moment operator for nonrigid H2X-type molecules has been worked out using the method of contact transformation. The treatment takes into account the large amplitude bending motion, which is described by the coordinate ℮. Formulae obtained for the transformed dipole moment operator for bending vibration quantum bands and for combination bands have been used for the determination of the functions µex(℮), µ1x(℮) and µ3z(℮) from the expansion of the molecular fixed component µa(℮, q) (a = x, y, z) of the electric dipole moment of the H2O molecule over q normal coordinates. Some different model forms for this function have been used..Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

A theory of the transformed dipole moment operator for nonrigid H2X-type molecules has been worked out using the method of contact transformation. The treatment takes into account the large amplitude bending motion, which is described by the coordinate ℮. Formulae obtained for the transformed dipole moment operator for bending vibration quantum bands and for combination bands have been used for the determination of the functions µex(℮), µ1x(℮) and µ3z(℮) from the expansion of the molecular fixed component µa(℮, q) (a = x, y, z) of the electric dipole moment of the H2O molecule over q normal coordinates. Some different model forms for this function have been used.

Для данного заглавия нет комментариев.

оставить комментарий.