Line positions and intensities of the v1+2v2+v3 and 2v2+2v3 of 16O3 / S. Bouazza [et al.]

Уровень набора: Journal of Molecular Structureer = 1957-Альтернативный автор-лицо: Bouazza, S.;Barbe, A.;Mikhailenko, S. N., physicist, Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences, 1962-, Semen Nikolaevich;Plateaux, J. J.Язык: английский.Страна: .Резюме или реферат: A study of high-resolution (0.006 cm−1) Fourier transform absorption spectra of 16O3around 3450 cm−1 has been performed, leading to the first analysis of the ν1 + 2ν2 + ν3 and 2ν2 + 2ν3 bands of this molecule. To increase the absorption strength of these very weak bands a White cell with path lengths of up to 36 m and pressures from 40 to 55 Torr was used. The rotational energy levels of the (121) and (022) vibrational states deduced from observed spectra have been satisfactorily reproduced using a Hamiltonian matrix which takes explicitly into account the Coriolis interaction between (121) ↔ (022) and (121) ↔ (220) and Darling-Dennison interaction between (022) ↔ (220). Furthermore about 60 and 20 line intensities, respectively, for the (121) and (022) bands were measured with an accuracy of about 6 and 12%, leading to the determination of the ν1 + 2ν2 + ν3 and 2ν2 + 2ν3 vibrational transition moments. Finally, a complete list of line positions, intensities, and lower state energies for both bands has been generated..Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

A study of high-resolution (0.006 cm−1) Fourier transform absorption spectra of 16O3around 3450 cm−1 has been performed, leading to the first analysis of the ν1 + 2ν2 + ν3 and 2ν2 + 2ν3 bands of this molecule. To increase the absorption strength of these very weak bands a White cell with path lengths of up to 36 m and pressures from 40 to 55 Torr was used. The rotational energy levels of the (121) and (022) vibrational states deduced from observed spectra have been satisfactorily reproduced using a Hamiltonian matrix which takes explicitly into account the Coriolis interaction between (121) ↔ (022) and (121) ↔ (220) and Darling-Dennison interaction between (022) ↔ (220). Furthermore about 60 and 20 line intensities, respectively, for the (121) and (022) bands were measured with an accuracy of about 6 and 12%, leading to the determination of the ν1 + 2ν2 + ν3 and 2ν2 + 2ν3 vibrational transition moments. Finally, a complete list of line positions, intensities, and lower state energies for both bands has been generated.

Для данного заглавия нет комментариев.

оставить комментарий.