Research on the radiation exposure "memory effects" in AlGaAs heterostructures / A. V. Gradoboev, V. V. Sednev
Уровень набора: (RuTPU)RU\TPU\network\2008, IOP Conference Series: Materials Science and EngineeringЯзык: английский.Страна: .Резюме или реферат: Radiation exposure and long running time cause degradation of semiconductors' structures as well as semiconductors based on these structures. Besides, long running time can be the reason of partial radiation defects annealing. The purpose of the research work is to study the "memory effect" that happens during fast neuron radiation in AlGaAs heterostructures. Objects of the research are Infrared Light Emitting Electrodes (IRED) based on doubled AlGaAs heterostructures. During the experimental research LEDs were preliminarily radiated with fast neutrons, and radiation defects were annealed within the condition of current training with high temperatures, then emission power was measured. The research proved the existence of the "memory effect" that results in radiation stability enhancement with subsequent radiation. Possible mechanisms of the "memory effect" occurrence are under review..Примечания о наличии в документе библиографии/указателя: [References: 6 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | радиационные воздействия | гетероструктуры | полупроводники | светодиоды | эффект памяти Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайнTitle screen
[References: 6 tit.]
Radiation exposure and long running time cause degradation of semiconductors' structures as well as semiconductors based on these structures. Besides, long running time can be the reason of partial radiation defects annealing. The purpose of the research work is to study the "memory effect" that happens during fast neuron radiation in AlGaAs heterostructures. Objects of the research are Infrared Light Emitting Electrodes (IRED) based on doubled AlGaAs heterostructures. During the experimental research LEDs were preliminarily radiated with fast neutrons, and radiation defects were annealed within the condition of current training with high temperatures, then emission power was measured. The research proved the existence of the "memory effect" that results in radiation stability enhancement with subsequent radiation. Possible mechanisms of the "memory effect" occurrence are under review.
Adobe Reader
Для данного заглавия нет комментариев.