Studying the D(p, γ)3He reaction in zirconium deuteride within the proton energy range of 9-35 keV / V. M. Bystritsky [et al.]
Уровень набора: Physics of Particles and Nuclei Letters, Scientific JournalЯзык: английский.Страна: .Резюме или реферат: This work is dedicated to measuring the dependences of the effective cross section and the astrophysical S factor for the pd reaction that proceeds in zirconium deuteride upon the proton-deuteron collision energy within a range of 6.0–23.3 keV. The experiment was performed using the heavy-current plasma Hall accelerator at the National Research Tomsk Polytechnic University. The gamma quanta produced in the pd reaction with the energy of 5.5 MeV was recorded using eight scintillation spectrometers based on NaI(Tl) crystals (400 ? 100 ? 100 mm), which were located around the target. The result of this work coincides with the result of our previous work obtained within a range of proton-deuteron collision energies of 7.3–12.7 keV and agrees well with the result obtained by the LUNA collaboration with the use of the gaseous deuterium target..Примечания о наличии в документе библиографии/указателя: [References: p. 557-558 (33 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: p. 557-558 (33 tit.)]
This work is dedicated to measuring the dependences of the effective cross section and the astrophysical S factor for the pd reaction that proceeds in zirconium deuteride upon the proton-deuteron collision energy within a range of 6.0–23.3 keV. The experiment was performed using the heavy-current plasma Hall accelerator at the National Research Tomsk Polytechnic University. The gamma quanta produced in the pd reaction with the energy of 5.5 MeV was recorded using eight scintillation spectrometers based on NaI(Tl) crystals (400 ? 100 ? 100 mm), which were located around the target. The result of this work coincides with the result of our previous work obtained within a range of proton-deuteron collision energies of 7.3–12.7 keV and agrees well with the result obtained by the LUNA collaboration with the use of the gaseous deuterium target.
Для данного заглавия нет комментариев.