Asymptotic Behavior of the One-Dimensional Fisher–Kolmogorov–Petrovskii–Piskunov Equation with Anomalouos Diffusion / A. A. Prozorov, A. Yu. Trifonov, A. V. Shapovalov
Уровень набора: Russian Physics Journal, Scientific Journal = 1965-Язык: английский.Серия: Elementary particle physics and field theoryРезюме или реферат: Asymptotic solutions of the nonlocal, one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with fractional derivatives in the diffusion operator are constructed. The fractional derivative is defined in accordance with the approaches of Weyl, Grьnwald–Letnilkov, and Liouville. Asymptotic solutions are constructed in a class of functions that are a perturbation of the found exact quasistationary solution and tend at large times to this quasistationary solution. It is shown that the presence of fractional derivatives leads to drift of the center of mass of the initial distribution and breaks its symmetry..Примечания о наличии в документе библиографии/указателя: [References: p. 409 (22 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | nonlocal fisher | anomalous diffusion | asymmetric solutions Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References: p. 409 (22 tit.)]
Asymptotic solutions of the nonlocal, one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with fractional derivatives in the diffusion operator are constructed. The fractional derivative is defined in accordance with the approaches of Weyl, Grьnwald–Letnilkov, and Liouville. Asymptotic solutions are constructed in a class of functions that are a perturbation of the found exact quasistationary solution and tend at large times to this quasistationary solution. It is shown that the presence of fractional derivatives leads to drift of the center of mass of the initial distribution and breaks its symmetry.
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.