On dynamical realizations of l-conformal Galilei and Newton–Hooke algebras / A. V. Galajinsky, I. V. Masterov

Уровень набора: Nuclear Physics B, Scientific Journal = 1956-Основной Автор-лицо: Galajinsky, A. V., Doctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT), Professor of the TPU, 1971-, Anton VladimirovichАльтернативный автор-лицо: Masterov, I. V., physicist, assistant at Tomsk Polytechnic University, 1987-, Ivan ViktorovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Физико-технический институт (ФТИ), Кафедра высшей математики и математической физики (ВММФ)Язык: английский.Страна: .Резюме или реферат: In two recent papers (Aizawa et al., 2013 [15]) and (Aizawa et al., 2015 [16]), representation theory ofthe centrally extended l-conformal Galilei algebra with half-integer l has been applied so as to constructsecond order differential equations exhibiting the corresponding group as kinematical symmetry. It wassuggested to treat them as the Schrodinger equations which involve Hamiltonians describing dynamicalsystems without higher derivatives. The Hamiltonians possess two unusual features, however. First, theyinvolve the standard kinetic term only for one degree of freedom, while the remaining variables providecontributions linear in momenta. This is typical for Ostrogradsky’s canonical approach to the description ofhigher derivative systems. Second, the Hamiltonian in the second paper is not Hermitian in the conventionalsense. In this work, we study the classical limit of the quantum Hamiltonians and demonstrate that the firstof them is equivalent to the Hamiltonian describing free higher derivative nonrelativistic particles, whilethe second can be linked to the Pais–Uhlenbeck oscillator whose frequencies form the arithmetic sequence?k = (2k ? 1), k = 1,..., n. We also confront the higher derivative models with a genuine second ordersystem constructed in our recent work (Galajinsky and Masterov, 2013 [5]) which is discussed in detailfor l = 32 ..Примечания о наличии в документе библиографии/указателя: [References: p. 253-254 (17 tit.)].Тематика: труды учёных ТПУ | электронный ресурс | алгебра Галилея | дифференциальные уравнения второго порядка | уравнение Шредингера | гамильтонианы Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: p. 253-254 (17 tit.)]

In two recent papers (Aizawa et al., 2013 [15]) and (Aizawa et al., 2015 [16]), representation theory ofthe centrally extended l-conformal Galilei algebra with half-integer l has been applied so as to constructsecond order differential equations exhibiting the corresponding group as kinematical symmetry. It wassuggested to treat them as the Schrodinger equations which involve Hamiltonians describing dynamicalsystems without higher derivatives. The Hamiltonians possess two unusual features, however. First, theyinvolve the standard kinetic term only for one degree of freedom, while the remaining variables providecontributions linear in momenta. This is typical for Ostrogradsky’s canonical approach to the description ofhigher derivative systems. Second, the Hamiltonian in the second paper is not Hermitian in the conventionalsense. In this work, we study the classical limit of the quantum Hamiltonians and demonstrate that the firstof them is equivalent to the Hamiltonian describing free higher derivative nonrelativistic particles, whilethe second can be linked to the Pais–Uhlenbeck oscillator whose frequencies form the arithmetic sequence?k = (2k ? 1), k = 1,..., n. We also confront the higher derivative models with a genuine second ordersystem constructed in our recent work (Galajinsky and Masterov, 2013 [5]) which is discussed in detailfor l = 32 .

Для данного заглавия нет комментариев.

оставить комментарий.