Free convection in a porous horizontal cylindrical annulus with a nanofluid using Buongiorno’s model / M. A. Sheremet, I. Pop
Уровень набора: Computers and FluidsЯзык: английский.Страна: .Резюме или реферат: Natural convection flow in a porous concentric horizontal annulus saturated with a water based nanofluid is numerically investigated. The mathematical model used is of single-phase and is formulated in dimensionless stream function and temperature taking into account the Darcy–Boussinesq approximation and the nanofluid model proposed by Buongiorno. The transformed dimensionless partial differential equations have been solved using a second-order accurate finite-difference technique. The results indicate that inclusion of nanoparticles into pure water changes the flow structure at low values of the Rayleigh number..Примечания о наличии в документе библиографии/указателя: [References: p. 189-190 (50 tit.)].Аудитория: .Тематика: труды учёных ТПУ | электронный ресурс | наножидкости | межтрубное пространство | пористые среды | численные методы Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References: p. 189-190 (50 tit.)]
Natural convection flow in a porous concentric horizontal annulus saturated with a water based nanofluid is numerically investigated. The mathematical model used is of single-phase and is formulated in dimensionless stream function and temperature taking into account the Darcy–Boussinesq approximation and the nanofluid model proposed by Buongiorno. The transformed dimensionless partial differential equations have been solved using a second-order accurate finite-difference technique. The results indicate that inclusion of nanoparticles into pure water changes the flow structure at low values of the Rayleigh number.
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.