Conjugate Heat Transfer in a Closed Volume with the Local Heat Sources and Non-Uniform Heat Dissipation on the Boundaries of Heat Conducting Walls / V. I. Maksimov, T. A. Nagornova, V. P. Glazyrin
Уровень набора: (RuTPU)RU\TPU\network\7958, European Physical Journal Web of Conferences (EPJ Web of Conferences)Язык: английский.Резюме или реферат: Is solved the problem of heat transfer in the closed volume, limited by heat-conducting walls, with the local source of heat emission and the heterogeneous conditions of heat sink on the outer boundaries of solution area. The problem of convective heat transfer is solved with using a system of differential Navier-Stokes equations in the Boussinesq approximation. The simulation of turbulent flow conditions of heated air is carried out within the framework to k-ε model. On the basis the analysis of the obtained temperature field and the contour lines of stream functions is made conclusion about the essential transiency of the process in question. The obtained values of temperatures and speeds in different sections of region illustrate turbulence of the process. Are investigated laws governing the formation of temperature fields in closed areas with a local heat emission source under the conditions of intensive local heat sink into environment and accumulation of heat in the enclosing constructions..Примечания о наличии в документе библиографии/указателя: [References: 18 tit.].Тематика: электронный ресурс | труды учёных ТПУ | теплообмен | замкнутые объемы | источники тепла | тепловыделение | теплоотводы Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайнTitle screen
[References: 18 tit.]
Is solved the problem of heat transfer in the closed volume, limited by heat-conducting walls, with the local source of heat emission and the heterogeneous conditions of heat sink on the outer boundaries of solution area. The problem of convective heat transfer is solved with using a system of differential Navier-Stokes equations in the Boussinesq approximation. The simulation of turbulent flow conditions of heated air is carried out within the framework to k-ε model. On the basis the analysis of the obtained temperature field and the contour lines of stream functions is made conclusion about the essential transiency of the process in question. The obtained values of temperatures and speeds in different sections of region illustrate turbulence of the process. Are investigated laws governing the formation of temperature fields in closed areas with a local heat emission source under the conditions of intensive local heat sink into environment and accumulation of heat in the enclosing constructions.
Для данного заглавия нет комментариев.