Cryogenic resonant microwave compressors with energy extraction through “warm” interference switches / S. N. Artemenko [et al.]

Уровень набора: Journal of Applied PhysicsАльтернативный автор-лицо: Artemenko, S. N., physicist, Leading researcher of Tomsk Polytechnic University, Doctor of physical and mathematical science, 1951-, Sergey Nikolaevich;Samoilenko (Samoylenko), G. M., physicist, Senior Lecturer of Tomsk Polytechnic University, Candidate of technical sciences, 1945-, Gennady Mikhailovich;Shlapakovsky, A. S., Anatoly Solomonovich;Yushkov, Y. G., electrophysicist, Professor of Tomsk Polytechnic University, Doctor of technical sciences, 1937-, Yuri GeorgievichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Физико-технический институт (ФТИ), Лаборатория № 46Язык: английский.Страна: .Резюме или реферат: A method of switching cryogenic resonant microwavecompressors from the energy accumulation mode to the energy release mode is proposed and analyzed. The switching process is based on the resonant transfer of the microwaveenergy from a cryogenic storage cavity to a room temperature commutation cavity. The transfer can be realized using a cascade interference microwave switch weakly coupled to the storage cavity and consisting of two H-plane waveguide tees connected in series. The tees are made of a normally conducting material, located outside the cryostat, and contain commuting units in shorted side arms. The length of the cascade input arm (from the storage cavity to the first tee) is non-resonant, while the space between the storage cavity and the second tee is resonant. The weak coupling of the storage cavity to the cascade and the non-resonant length of its input arm allow one to minimize losses during the energy accumulation phase. When the commuting unit in the first tee is ignited, the tee opens, and the non-resonant volume of the cascade input arm is transformed into the volume of the resonant commutation cavity. The microwaveenergy is then transferred in a resonant way from the storage cavity to the commutation cavity, and when the transfer is complete, the commuting unit in the second tee is ignited to extract the energy into a load. It is shown analytically that, at a certain value of the coupling (the cryogenic storage cavity to the normally conducting cascade of tees) and length of the cascade input arm, the power gain in the storage cavity can be kept high. It is also shown that the energy accumulated in the storage cavity can be effectively transferred to the commutation cavity and from the commutation cavity to the load..Примечания о наличии в документе библиографии/указателя: [References: 11 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 11 tit.]

A method of switching cryogenic resonant microwavecompressors from the energy accumulation mode to the energy release mode is proposed and analyzed. The switching process is based on the resonant transfer of the microwaveenergy from a cryogenic storage cavity to a room temperature commutation cavity. The transfer can be realized using a cascade interference microwave switch weakly coupled to the storage cavity and consisting of two H-plane waveguide tees connected in series. The tees are made of a normally conducting material, located outside the cryostat, and contain commuting units in shorted side arms. The length of the cascade input arm (from the storage cavity to the first tee) is non-resonant, while the space between the storage cavity and the second tee is resonant. The weak coupling of the storage cavity to the cascade and the non-resonant length of its input arm allow one to minimize losses during the energy accumulation phase. When the commuting unit in the first tee is ignited, the tee opens, and the non-resonant volume of the cascade input arm is transformed into the volume of the resonant commutation cavity. The microwaveenergy is then transferred in a resonant way from the storage cavity to the commutation cavity, and when the transfer is complete, the commuting unit in the second tee is ignited to extract the energy into a load. It is shown analytically that, at a certain value of the coupling (the cryogenic storage cavity to the normally conducting cascade of tees) and length of the cascade input arm, the power gain in the storage cavity can be kept high. It is also shown that the energy accumulated in the storage cavity can be effectively transferred to the commutation cavity and from the commutation cavity to the load.

Для данного заглавия нет комментариев.

оставить комментарий.