Motion of a virtual cathode in a cylindrical channel with electron beam transport in the “compressed” state / S. Ya. Belomyttsev [et al.]
Уровень набора: Physics of PlasmasЯзык: английский.Страна: .Резюме или реферат: This paper studies the motion of a virtual cathode in a two-section drift tube with the formation and breakup of the “compressed” state of an electron beam. Experimental arrangements to intercept part of the injected current during the voltage pulse and to provide virtual cathode motion toward the collector are proposed. The arrangements were implemented on the SINUS-7 high-current electron accelerator. Theoretical and experimental dependences of the virtual cathode velocity on the injected current and cathode voltage are presented. The experimental data on virtual cathode motion agree with its theoretical model based on analytical solutions of equations assisted by computer simulation with the PIC code KARAT. The results of the work demonstrate the feasibility of controlling the virtual cathode motion which can be used in collective ion acceleration and microwave generation..Примечания о наличии в документе библиографии/указателя: [References: 22 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 22 tit.]
This paper studies the motion of a virtual cathode in a two-section drift tube with the formation and breakup of the “compressed” state of an electron beam. Experimental arrangements to intercept part of the injected current during the voltage pulse and to provide virtual cathode motion toward the collector are proposed. The arrangements were implemented on the SINUS-7 high-current electron accelerator. Theoretical and experimental dependences of the virtual cathode velocity on the injected current and cathode voltage are presented. The experimental data on virtual cathode motion agree with its theoretical model based on analytical solutions of equations assisted by computer simulation with the PIC code KARAT. The results of the work demonstrate the feasibility of controlling the virtual cathode motion which can be used in collective ion acceleration and microwave generation.
Для данного заглавия нет комментариев.