Determination of surface tension and contact angle by the axisymmetric bubble and droplet shape analysis, Electronic resource / I. V. Marchuk [et al.]

Уровень набора: Thermophysics and Aeromechanics, Scientific Journal = 1994-Альтернативный автор-лицо: Marchuk, I. V.;Cheverda, V. V.;Strizhak, P. A., Specialist in the field of heat power energy, Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU), 1985-, Pavel Alexandrovich;Kabov, O. A., specialist in the field of thermal engineering, Professor of Tomsk Polytechnic University, doctor of physical and mathematical Sciences, 1956-, Oleg AleksandrovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Энергетический институт (ЭНИН), Кафедра автоматизации теплоэнергетических процессов (АТП);Национальный исследовательский Томский политехнический университет (ТПУ), Энергетический институт (ЭНИН), Кафедра теоретической и промышленной теплотехники (ТПТ)Язык: английский.Страна: .Резюме или реферат: The algorithms of solution to the Young–Laplace equation, describing the shape of an axisymmetric droplet on a flat horizontal surface, with various ways of setting the initial data and geometric parameters of a droplet, were derived and tested. Analysis of the Young–Laplace equation showed that a family of curves that form the droplet surface is the single-parametric one with the accuracy of up to the scale factor, whose role is played by the capillary length, and the contact angle determines the curve turn at a contact point, but it does not affect the shape of the curve. The main natural parameter defining the family of the forming curve is the curvature at the droplet top. The droplet shape is uniquely determined by three independent geometric parameters. This fact allows us to calculate the physical properties, such as the capillary length and contact angle, measuring three independent values: height, droplet diameter, and diameter of the droplet base or the area of the axial cross section of the droplet or its volume..Примечания о наличии в документе библиографии/указателя: [References: p. 303 (11 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | капли | поверхностное натяжение | поверхностная тензометрия | уравнение Янга-Лапласа | угол контакта Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: p. 303 (11 tit.)]

The algorithms of solution to the Young–Laplace equation, describing the shape of an axisymmetric droplet on a flat horizontal surface, with various ways of setting the initial data and geometric parameters of a droplet, were derived and tested. Analysis of the Young–Laplace equation showed that a family of curves that form the droplet surface is the single-parametric one with the accuracy of up to the scale factor, whose role is played by the capillary length, and the contact angle determines the curve turn at a contact point, but it does not affect the shape of the curve. The main natural parameter defining the family of the forming curve is the curvature at the droplet top. The droplet shape is uniquely determined by three independent geometric parameters. This fact allows us to calculate the physical properties, such as the capillary length and contact angle, measuring three independent values: height, droplet diameter, and diameter of the droplet base or the area of the axial cross section of the droplet or its volume.

Для данного заглавия нет комментариев.

оставить комментарий.