Classification of the Bazhenov Formation Using Well Logs (R Field) / D. A. Simonov [et al.]

Альтернативный автор-лицо: Simonov, D. A., Dmitry Arturovich;Baranov, V. E., geologist, head of laboratory of Tomsk Polytechnic University, 1976-, Vitaliy Evgenievich;Bukhanov, N. V., geologist, engineer of Tomsk Polytechnic University, 1986-, Nikita Vladimirovich;Beschasova, P. A., specialist in the field of oil and gas business, engineer at Tomsk Polytechnic University, 1990-, Polina AnatoljevnaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Институт природных ресурсов (ИПР), Центр подготовки и переподготовки специалистов нефтегазового дела (ЦППС НД), Лаборатория геологии месторождений нефти и газа (ЛГМНГ)Язык: русский.Серия: Exploration & Production in Unconventional ReservoirsРезюме или реферат: This paper consider the main aspects of the Bazhenov formation interpretation and applying of machine learning algorithms in cases a of Kolpashev type section of the Bazhenov formation. Application of automatic algorithms of classification which would transfer the scale of research from small to large. Machine learning algorithms help to interpret the Bazhenov formation in reference well and in the other wells. During this work the unsupervised and supervised machine learning algorithms were applied to interpret the lithology and reservoir properties. This greatly simplifies the routine problem which deals with manual interpretation and has an economic effect deal with cost of laboratory analysis..Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

This paper consider the main aspects of the Bazhenov formation interpretation and applying of machine learning algorithms in cases a of Kolpashev type section of the Bazhenov formation. Application of automatic algorithms of classification which would transfer the scale of research from small to large. Machine learning algorithms help to interpret the Bazhenov formation in reference well and in the other wells. During this work the unsupervised and supervised machine learning algorithms were applied to interpret the lithology and reservoir properties. This greatly simplifies the routine problem which deals with manual interpretation and has an economic effect deal with cost of laboratory analysis.

Для данного заглавия нет комментариев.

оставить комментарий.