Photodynamic therapy platform based on localized delivery of photosensitizer by vaterite submicron particles / Yu. I. Svenskaya [et al.]

Уровень набора: Colloids and Surfaces B: Biointerfaces, Scientific JournalАльтернативный автор-лицо: Svenskaya, Yu. I.;Pavlov, A. M.;Gorin, D. A., chemist, Leading researcher of Tomsk Polytechnic University, 1975-, Dmitry Aleksandrovich;Gould, D. J.;Parakhonskiy, B. V.;Sukhorukov, G. B., chemist, The Head of the Laboratory of Tomsk Polytechnic University, Candidate of physical and mathematical sciences, 1969-, Gleb BorisovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Управление проректора по научной работе и инновациям (НРиИ), Центр RASA в Томске (Центр RASA), Лаборатория новых лекарственных форм (Лаб. НЛФ)Язык: английский.Резюме или реферат: The elaboration of biocompatible and biodegradable carriers for photosensitizer targeted delivery is one of the most promising approaches in a modern photodynamic therapy (PDT). This approach is aimed at reducing sides effects connected with incidental toxicity in healthy tissue whilst also enhancing drug accumulation in the tumour area. In the present work, Photosens-loaded calcium carbonate (CaCO3) submicron particles in vaterite modification are proposed as a novel platform for anticancer PDT. Fast penetration of the carriers (0.9 ± 0.2 μm in diameter) containing 0.12% (w/w) of the photosensitizer into NIH3T3/EGFP cells is demonstrated. The captured particles provide the dye localization inside the cell increasing its local concentration, compared with “free” Photosens solution which is uniformly distributed throughout the cell. The effect of photosensitizer encapsulation into vaterite submicron particles on cell viability under laser irradiation (670 nm, 19 mW/cm2, 10 min) is discussed in the work. As determined by a viability assay, the encapsulation renders Photosens more phototoxic. By this means, CaCO3 carriers allow improvement of the photosensitizer effectiveness supposing, therefore, the reduction of therapeutic dose. Summation of these effects with the simplicity, upscalability and cheapness of fabrication, biocompatibility and high payload ability of the vaterite particles hold out the prospect of a novel PDT platform..Примечания о наличии в документе библиографии/указателя: [References: p. 178-179 (62 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: p. 178-179 (62 tit.)]

The elaboration of biocompatible and biodegradable carriers for photosensitizer targeted delivery is one of the most promising approaches in a modern photodynamic therapy (PDT). This approach is aimed at reducing sides effects connected with incidental toxicity in healthy tissue whilst also enhancing drug accumulation in the tumour area. In the present work, Photosens-loaded calcium carbonate (CaCO3) submicron particles in vaterite modification are proposed as a novel platform for anticancer PDT. Fast penetration of the carriers (0.9 ± 0.2 μm in diameter) containing 0.12% (w/w) of the photosensitizer into NIH3T3/EGFP cells is demonstrated. The captured particles provide the dye localization inside the cell increasing its local concentration, compared with “free” Photosens solution which is uniformly distributed throughout the cell. The effect of photosensitizer encapsulation into vaterite submicron particles on cell viability under laser irradiation (670 nm, 19 mW/cm2, 10 min) is discussed in the work. As determined by a viability assay, the encapsulation renders Photosens more phototoxic. By this means, CaCO3 carriers allow improvement of the photosensitizer effectiveness supposing, therefore, the reduction of therapeutic dose. Summation of these effects with the simplicity, upscalability and cheapness of fabrication, biocompatibility and high payload ability of the vaterite particles hold out the prospect of a novel PDT platform.

Для данного заглавия нет комментариев.

оставить комментарий.