Fractography of Fatigue Fracture Surface in Silumin Subjected to Electron-Beam Processing / S. V. Konovalov [et al.]

Уровень набора: (RuTPU)RU\TPU\network\2008, IOP Conference Series: Materials Science and EngineeringАльтернативный автор-лицо: Konovalov, S. V.;Aksenova, K. V.;Gromov, V. E.;Ivanov, Yu. F., physicist, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1955-, Yuriy Fedorovich;Semina, O. A.Коллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Институт физики высоких технологий (ИФВТ), Кафедра наноматериалов и нанотехнологий (НМНТ)Язык: английский.Страна: .Резюме или реферат: The surface modification of the eutectic silumin with high-intensity pulsed electron beam has been carried out. Multi-cycle fatigue tests were performed and irradiation mode made possible the increase in the silumin fatigue life more than 3.5 times was determined. Studies of the structure of the surface irradiation and surface fatigue fracture of silumin in the initial (unirradiated) state and after modification with intense pulsed electron beam were carried out by methods of scanning electron microscopy. It has been shown, that in mode of partial melting of the irradiation surface the modification process of silicon plates is accompanied by the formation of numerous large micropores along the boundary plate/matrix and microcracks located in the silicon plates. A multi-modal structure (grain size within 30-50 μm with silicon particles up to 10 [mu]m located on the boundaries) is formed in stable melting mode, as well as subgrain structure in the form of crystallization cells from 100 to 250 [mu]m in size). Formation of a multi-modal, multi-phase, submicro- and nanosize structure assisting to a significant increase in the critical length of the crack, the safety coefficient and decrease in step of cracks for loading cycle was the main cause for the increase in silumin fatigue life..Примечания о наличии в документе библиографии/указателя: [References: 14 tit.].Тематика: электронный ресурс | труды учёных ТПУ | фрактография | усталостные разрушения | поверхности | силумины | электронно-лучевая обработка Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 14 tit.]

The surface modification of the eutectic silumin with high-intensity pulsed electron beam has been carried out. Multi-cycle fatigue tests were performed and irradiation mode made possible the increase in the silumin fatigue life more than 3.5 times was determined. Studies of the structure of the surface irradiation and surface fatigue fracture of silumin in the initial (unirradiated) state and after modification with intense pulsed electron beam were carried out by methods of scanning electron microscopy. It has been shown, that in mode of partial melting of the irradiation surface the modification process of silicon plates is accompanied by the formation of numerous large micropores along the boundary plate/matrix and microcracks located in the silicon plates. A multi-modal structure (grain size within 30-50 μm with silicon particles up to 10 [mu]m located on the boundaries) is formed in stable melting mode, as well as subgrain structure in the form of crystallization cells from 100 to 250 [mu]m in size). Formation of a multi-modal, multi-phase, submicro- and nanosize structure assisting to a significant increase in the critical length of the crack, the safety coefficient and decrease in step of cracks for loading cycle was the main cause for the increase in silumin fatigue life.

Для данного заглавия нет комментариев.

оставить комментарий.