Superconformal SU(1, 1|n) mechanics / A. V. Galajinsky, O. Lechtenfeld

Уровень набора: Journal of High Energy PhysicsОсновной Автор-лицо: Galajinsky, A. V., Doctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT), Professor of the TPU, 1971-, Anton VladimirovichАльтернативный автор-лицо: Lechtenfeld, O., OlefКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Физико-технический институт (ФТИ), Кафедра высшей математики и математической физики (ВММФ)Язык: английский.Страна: .Резюме или реферат: Recent years have seen an upsurge of interest in dynamical realizations of the superconformal group SU(1, 1|2) in mechanics. Remarking that SU(1, 1|2) is a particular member of a chain of supergroups SU(1, 1|n) parametrized by an integer n, here we begin a systematic study of SU(1, 1|n) multi-particle mechanics. A representation of the superconformal algebra su(1, 1|n) is constructed on the phase space spanned by m copies of the (1, 2n, 2n-1) supermultiplet. We show that the dynamics is governed by two prepotentials V and F, and the Witten-Dijkgraaf-Verlinde-Verlinde equation for F shows up as a consequence of a more general fourth-order equation. All solutions to the latter in terms of root systems reveal decoupled models only. An extension of the dynamical content of the (1, 2n, 2n-1) supermultiplet by angular variables in a way similar to the SU(1, 1|2) case is problematic..Примечания о наличии в документе библиографии/указателя: [References: 32 tit.].Тематика: электронный ресурс | труды учёных ТПУ | суперсимметрии Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 32 tit.]

Recent years have seen an upsurge of interest in dynamical realizations of the superconformal group SU(1, 1|2) in mechanics. Remarking that SU(1, 1|2) is a particular member of a chain of supergroups SU(1, 1|n) parametrized by an integer n, here we begin a systematic study of SU(1, 1|n) multi-particle mechanics. A representation of the superconformal algebra su(1, 1|n) is constructed on the phase space spanned by m copies of the (1, 2n, 2n-1) supermultiplet. We show that the dynamics is governed by two prepotentials V and F, and the Witten-Dijkgraaf-Verlinde-Verlinde equation for F shows up as a consequence of a more general fourth-order equation. All solutions to the latter in terms of root systems reveal decoupled models only. An extension of the dynamical content of the (1, 2n, 2n-1) supermultiplet by angular variables in a way similar to the SU(1, 1|2) case is problematic.

Для данного заглавия нет комментариев.

оставить комментарий.