Discretization of Natanzon potentials / A. Ishkhanyan, V. Kraynov

Уровень набора: The European Physical Journal PlusОсновной Автор-лицо: Ishkhanyan, A., physicist, Associate Scientist of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1960-, ArturАльтернативный автор-лицо: Kraynov, V., VladimirКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Физико-технический институт (ФТИ), Кафедра общей физики (ОФ)Язык: английский.Страна: .Резюме или реферат: We show that the Natanzon family of potentials is necessarily dropped into a restricted set of distinct potentials involving a fewer number of independent parameters if the potential term in the Schrцdinger equation is proportional to an energy-independent parameter and if the potential shape is independent of both energy and that parameter. In the hypergeometric case only six such potentials exist, all five-parametric. Among these, only two (Eckart, Pцschl-Teller) are independent in the sense that each cannot be derived from the other by specifications of the involved parameters. Discussing the solvability of the Schrцdinger equation in terms of the single-confluent Heun functions, we show that in this case there exist in total fifteen seven-parametric potentials, of which independent are nine. Six of the independent potentials present different generalizations of the hypergeometric or confluent hypergeometric ones, while three others do not possess hypergeometric sub-potentials. The result for the double- and bi-confluent Heun equations produces the three independent double- and five independent bi-confluent six-parametric Lamieux-Bose potentials, and the general five-parametric quartic oscillator potential for the tri-confluent Heun equation..Примечания о наличии в документе библиографии/указателя: [References: 49 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | дискретизация | потенциалы Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 49 tit.]

We show that the Natanzon family of potentials is necessarily dropped into a restricted set of distinct potentials involving a fewer number of independent parameters if the potential term in the Schrцdinger equation is proportional to an energy-independent parameter and if the potential shape is independent of both energy and that parameter. In the hypergeometric case only six such potentials exist, all five-parametric. Among these, only two (Eckart, Pцschl-Teller) are independent in the sense that each cannot be derived from the other by specifications of the involved parameters. Discussing the solvability of the Schrцdinger equation in terms of the single-confluent Heun functions, we show that in this case there exist in total fifteen seven-parametric potentials, of which independent are nine. Six of the independent potentials present different generalizations of the hypergeometric or confluent hypergeometric ones, while three others do not possess hypergeometric sub-potentials. The result for the double- and bi-confluent Heun equations produces the three independent double- and five independent bi-confluent six-parametric Lamieux-Bose potentials, and the general five-parametric quartic oscillator potential for the tri-confluent Heun equation.

Для данного заглавия нет комментариев.

оставить комментарий.