Au/TiO2 catalysts promoted with Fe and Mg for n-octanol oxidation under mild conditions / Yu. I. Kotolevich [et al.]
Уровень набора: Catalysis Today = 1987-Язык: английский.Резюме или реферат: This work aims to further the understanding of gold-based catalytic oxidation of n-octanol in liquid phase. Modification of catalysts with metal oxides additives (Fe or Mg) was used as a tool for transforming and stabilizing gold species. Structural, electronic and catalytic properties of gold catalysts were systematically investigated by means of DRS, H2, CO FTIR, SBET, EDS and SEM, HRTEM, SR-XRD, XANES, XPS and liquid phase n-octanol oxidation. Addition of modifiers affects Au electronic properties, but not the structural ones. Characterization results allow excluding Au3+ ions as candidates for active sites in n-octanol oxidation. In Au/Mg/TiO2, gold exhibited more reduced states while in Au/Fe/TiO2 gold was more oxidized; Au/TiO2 for intermediate oxidized states was found. The proper balance of oxidation states in the gold surface of Au/Mg/TiO2 can be responsible for its higher activity compared with Au/Fe/TiO2 and Au/TiO2 towards n-octanol oxidation. Finally our approach shed light on the nature of active sites for n-octanol oxidation on gold and furthers the development of green base-free catalytic oxidation of alcohols..Примечания о наличии в документе библиографии/указателя: [References: р. 112 (43 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | Au/TiO2 | железо | магний | окисление | катализаторы | оксиды железа | окиды магния | золото | электронное состояние Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: р. 112 (43 tit.)]
This work aims to further the understanding of gold-based catalytic oxidation of n-octanol in liquid phase. Modification of catalysts with metal oxides additives (Fe or Mg) was used as a tool for transforming and stabilizing gold species. Structural, electronic and catalytic properties of gold catalysts were systematically investigated by means of DRS, H2, CO FTIR, SBET, EDS and SEM, HRTEM, SR-XRD, XANES, XPS and liquid phase n-octanol oxidation. Addition of modifiers affects Au electronic properties, but not the structural ones. Characterization results allow excluding Au3+ ions as candidates for active sites in n-octanol oxidation. In Au/Mg/TiO2, gold exhibited more reduced states while in Au/Fe/TiO2 gold was more oxidized; Au/TiO2 for intermediate oxidized states was found. The proper balance of oxidation states in the gold surface of Au/Mg/TiO2 can be responsible for its higher activity compared with Au/Fe/TiO2 and Au/TiO2 towards n-octanol oxidation. Finally our approach shed light on the nature of active sites for n-octanol oxidation on gold and furthers the development of green base-free catalytic oxidation of alcohols.
Для данного заглавия нет комментариев.