Eisenhart lift for higher derivative systems / A. V. Galajinsky, I. V. Masterov

Уровень набора: Physics Letters B = 1967-Основной Автор-лицо: Galajinsky, A. V., Doctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT), Professor of the TPU, 1971-, Anton VladimirovichАльтернативный автор-лицо: Masterov, I. V., physicist, research engineer, Senior Lecturer of Tomsk Polytechnic University, candidate of physico-mathematical Sciences, 1987-, Ivan ViktorovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Физико-технический институт (ФТИ), Кафедра высшей математики и математической физики (ВММФ);Национальный исследовательский Томский политехнический университет (ТПУ), Физико-технический институт (ФТИ), Кафедра высшей математики и математической физики (ВММФ), Международная лаборатория математической физики (МЛМФ)Язык: английский.Резюме или реферат: The Eisenhart lift provides an elegant geometric description of a dynamical system of second order in terms of null geodesics of the Brinkmann-type metric. In this work, we attempt to generalize the Eisenhart method so as to encompass higher derivative models. The analysis relies upon Ostrogradsky's Hamiltonian. A consistent geometric description seems feasible only for a particular class of potentials. The scheme is exemplified by the Pais–Uhlenbeck oscillator..Примечания о наличии в документе библиографии/указателя: [References.: p. 253 (24 tit.)].Тематика: электронный ресурс | труды учёных ТПУ | Higher derivative mechanics | Eisenhart lift Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References.: p. 253 (24 tit.)]

The Eisenhart lift provides an elegant geometric description of a dynamical system of second order in terms of null geodesics of the Brinkmann-type metric. In this work, we attempt to generalize the Eisenhart method so as to encompass higher derivative models. The analysis relies upon Ostrogradsky's Hamiltonian. A consistent geometric description seems feasible only for a particular class of potentials. The scheme is exemplified by the Pais–Uhlenbeck oscillator.

Для данного заглавия нет комментариев.

оставить комментарий.